中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Generative Adversarial Network for Abstractive Text Summarization

文献类型:会议论文

作者Linqing Liu; Yao Lu; Min Yang; Qiang Qu; Jia Zhu
出版日期2018
会议日期2018
会议地点New Orleans, Louisiana, USA
英文摘要In this paper, we propose an adversarial process for abstractive text summarization, in which we simultaneously train a generative model G and a discriminative model D. In particular, we build the generator G as an agent of reinforcement learning, which takes the raw text as input and predicts the abstractive summarization. We also build a discriminator which attempts to distinguish the generated summary from the ground truth summary. Extensive experiments demonstrate that our model achieves competitive ROUGE scores with the state-of-the-art methods on CNN/Daily Mail dataset. Qualitatively, we show that our model is able to generate more abstractive, readable and diverse summaries1.
语种英语
URL标识查看原文
源URL[http://ir.siat.ac.cn:8080/handle/172644/14096]  
专题深圳先进技术研究院_数字所
推荐引用方式
GB/T 7714
Linqing Liu,Yao Lu,Min Yang,et al. Generative Adversarial Network for Abstractive Text Summarization[C]. 见:. New Orleans, Louisiana, USA. 2018.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。