中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Accelerometer-Based Gait Recognition Using PCA & LDA Algorithms

文献类型:会议论文

作者Chenfei Mao; Fangmin Sun; Ye Li
出版日期2018
会议日期2018
会议地点英文
英文摘要Abstract—As an emerging biometric authentication technology, gait recognition has various advantages including noninvasive data collecting, continuous gait monitoring, no need user's interactive operation, etc. This paper presents a new gait feature extraction method which can accurately obtain the gait cycle even if the user walking at various speeds. A feature space was first processed by principal component analysis (PCA) and linear discriminant analysis (LDA) to reduce the dimension of the eigenvector and improve the resolution. Finally, the Euclidean distance was used as the template matching algorithm. Experiments have been done on the public dataset and experiment results show that the proposed method has superior recognition performance. The recognition rate was up to 97.5% when acceleration data collected from five body locations were used together.
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/14154]  
专题深圳先进技术研究院_数字所
推荐引用方式
GB/T 7714
Chenfei Mao,Fangmin Sun,Ye Li. Accelerometer-Based Gait Recognition Using PCA & LDA Algorithms[C]. 见:. 英文. 2018.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。