Frequency-dependent anisotropic modeling and analysis using mfEIT: A computer simulation study
文献类型:期刊论文
作者 | Seo, Jin Keun; Potter, Thomas; Li, Guanglin; Zhang, Yingchun; Zhang, Tingting; Li, Rihui |
刊名 | INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING
![]() |
出版日期 | 2018 |
文献子类 | 期刊论文 |
英文摘要 | Electrical properties of human tissues are usually linked with structure of thin insulating membranes and thereby reflect physiological function of the tissues or organs. It is clinically important to characterize electrical properties of tissues in vivo. Electrical impedance tomography is a recently developed medical imaging technique, which has been exploited to characterize electrical properties (conductivity and permittivity) of human tissues by injecting currents and measuring the resulting voltages at boundary electrodes. The electrical characteristic of a majority of human tissues, such as bones, muscles, and brain white matter, exhibits an anisotropic property. The anisotropic phenomenon of human tissues is frequency dependent that vanishes at high frequencies. Previous electrical impedance tomography studies that aimed at the reconstruction of anisotropic subject tissues have been focused on the theoretical analysis of uniqueness up to a diffeomorphism or the establishment of an accurate forward model by using an anisotropic conductivity tensor. However, effects of the current frequency on the accuracy of the reconstructions of anisotropic subjects remain poorly studied. The goal of this study is to examine the feasibility of multifrequency electrical impedance tomography by using it in a simulation study to recover the frequency-dependent anisotropic properties of a phantom subject composed of alternating insulating and conductive layers. The anisotropic properties of the subject were analyzed by an effective admittivity tensor, and the responses of the current flow pathways and voltages were investigated at various applied current frequencies in the forward model. The linear reconstruction was performed following the sensitivity matrix approach at multiple frequencies. Simulation results achieved at various frequencies revealed that the anisotropy of the model was effectively reconstructed at low frequencies and disappeared at high frequencies, from which we validated the feasibility of multifrequency electrical impedance tomography method in reconstructing the anisotropic directions of the considered object. |
URL标识 | 查看原文 |
语种 | 英语 |
源URL | [http://ir.siat.ac.cn:8080/handle/172644/14173] ![]() |
专题 | 深圳先进技术研究院_医工所 |
推荐引用方式 GB/T 7714 | Seo, Jin Keun,Potter, Thomas,Li, Guanglin,et al. Frequency-dependent anisotropic modeling and analysis using mfEIT: A computer simulation study[J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING,2018. |
APA | Seo, Jin Keun,Potter, Thomas,Li, Guanglin,Zhang, Yingchun,Zhang, Tingting,&Li, Rihui.(2018).Frequency-dependent anisotropic modeling and analysis using mfEIT: A computer simulation study.INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING. |
MLA | Seo, Jin Keun,et al."Frequency-dependent anisotropic modeling and analysis using mfEIT: A computer simulation study".INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING (2018). |
入库方式: OAI收割
来源:深圳先进技术研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。