中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Progressively Distribution-based Rician Noise Removal for Magnetic Resonance Imaging

文献类型:会议论文

作者Qiegen Liu; Sanqian Li; Jiujie Lv; Dong Liang
出版日期2018
会议日期2018年
会议地点巴黎
英文摘要Different from the existing MRI denoising methods that utilizing the spatial neighbor information around the pixels or patches, this work turns to capture the pixel-level distribution information by means of supervised network learning. A wide and progressive network learning strategy is proposed, via fitting the distribution at pixel-level and feature-level with large convolutional filters. The whole network is trained in a two-stage fashion, consisting of the residual network in pixel domain with batch normalization layer and in feature domain without batch normalization layer. Experiments demonstrate its great potential with substantially improved SNR and preserved edges and structures.
URL标识查看原文
源URL[http://ir.siat.ac.cn:8080/handle/172644/14566]  
专题深圳先进技术研究院_医工所
推荐引用方式
GB/T 7714
Qiegen Liu,Sanqian Li,Jiujie Lv,et al. Progressively Distribution-based Rician Noise Removal for Magnetic Resonance Imaging[C]. 见:. 巴黎. 2018年.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。