Concurrent coupling of atomistic simulation and mesoscopic hydrodynamics for flows over soft multi-functional surfaces
文献类型:期刊论文
作者 | Wang, Yuying1,2,3; Li, Zhen2; Xu, Junbo1; Yang, Chao1,3; Karniadakis, George Em2 |
刊名 | SOFT MATTER
![]() |
出版日期 | 2019-02-28 |
卷号 | 15期号:8页码:1747-1757 |
ISSN号 | 1744-683X |
DOI | 10.1039/c8sm02170h |
英文摘要 | We develop an efficient parallel multiscale method that bridges the atomistic and mesoscale regimes, from nanometers to microns and beyond, via concurrent coupling of atomistic simulation and mesoscopic dynamics. In particular, we combine an all-atom molecular dynamics (MD) description for specific atomistic details in the vicinity of the functional surface with a dissipative particle dynamics (DPD) approach that captures mesoscopic hydrodynamics in the domain away from the functional surface. In order to achieve a seamless transition in dynamic properties we endow the MD simulation with a DPD thermostat, which is validated against experimental results by modeling water at different temperatures. We then validate the MD-DPD coupling method for transient Couette and Poiseuille flows, demonstrating that the concurrent MD-DPD coupling can resolve accurately the continuumbased analytical solutions. Subsequently, we simulate shear flows over grafted polydimethylsiloxane (PDMS) surfaces (polymer brushes) for various grafting densities, and investigate the slip flow as a function of the shear stress. We verify that a "universal'' power law exists for the slip length, in agreement with published results. Having validated the MD-DPD coupling method, we simulate timedependent flows past an endothelial glycocalyx layer (EGL) in a microchannel. Coupled simulation results elucidate the dynamics of the EGL changing from an equilibrium state to a compressed state under shear by aligning the molecular structures along the shear direction. MD-DPD simulation results agree well with results of a single MD simulation, but with the former more than two orders of magnitude faster than the latter for system sizes above one micron. |
WOS关键词 | DISSIPATIVE PARTICLE DYNAMICS ; ENDOTHELIAL GLYCOCALYX ; TRANSPORT-PROPERTIES ; DRUG-DELIVERY ; BLOOD-FLOW ; CONTINUUM ; PDMS ; NANOFILTRATION ; PERMEABILITY ; MEMBRANES |
资助项目 | National Natural Science Foundation of China[21878298] ; National Natural Science Foundation of China[11602133] ; National Institutes of Health (NIH)[U01HL114476] ; National Institutes of Health (NIH)[U01HL116323] ; DOE PhILMs project[DE-SC0019453] ; U.S. Army Research Laboratory[W911NF-12-2-0023] ; Chinese Scholarship Council (CSC) |
WOS研究方向 | Chemistry ; Materials Science ; Physics ; Polymer Science |
语种 | 英语 |
WOS记录号 | WOS:000459482400019 |
出版者 | ROYAL SOC CHEMISTRY |
资助机构 | National Natural Science Foundation of China ; National Institutes of Health (NIH) ; DOE PhILMs project ; U.S. Army Research Laboratory ; Chinese Scholarship Council (CSC) |
源URL | [http://ir.ipe.ac.cn/handle/122111/28099] ![]() |
专题 | 中国科学院过程工程研究所 |
通讯作者 | Li, Zhen; Yang, Chao |
作者单位 | 1.Chinese Acad Sci, Inst Proc Engn, CAS Key Lab Green Proc & Engn, Beijing 100190, Peoples R China 2.Brown Univ, Div Appl Math, Providence, RI 02912 USA 3.Univ Chinese Acad Sci, Sch Chem Engn, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Yuying,Li, Zhen,Xu, Junbo,et al. Concurrent coupling of atomistic simulation and mesoscopic hydrodynamics for flows over soft multi-functional surfaces[J]. SOFT MATTER,2019,15(8):1747-1757. |
APA | Wang, Yuying,Li, Zhen,Xu, Junbo,Yang, Chao,&Karniadakis, George Em.(2019).Concurrent coupling of atomistic simulation and mesoscopic hydrodynamics for flows over soft multi-functional surfaces.SOFT MATTER,15(8),1747-1757. |
MLA | Wang, Yuying,et al."Concurrent coupling of atomistic simulation and mesoscopic hydrodynamics for flows over soft multi-functional surfaces".SOFT MATTER 15.8(2019):1747-1757. |
入库方式: OAI收割
来源:过程工程研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。