中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Discovering personalized driver mutation profiles of single samples in cancer by network control strategy

文献类型:期刊论文

作者Guo, Wei-Feng1,2; Zhang, Shao-Wu1; Liu, Li-Li1; Liu, Fei1,3; Shi, Qian-Qian2; Zhang, Lei2; Tang, Ying2; Zeng, Tao2; Chen, Luonan2,4
刊名BIOINFORMATICS
出版日期2018
卷号34期号:11页码:1893-1903
关键词Somatic Mutations Genes Expression Prediction Medicine Controllability Integration Pathways Genomics Scale
ISSN号1367-4803
DOI10.1093/bioinformatics/bty006
文献子类Article
英文摘要

Motivation: It is a challenging task to discover personalized driver genes that provide crucial information on disease risk and drug sensitivity for individual patients. However, few methods have been proposed to identify the personalized-sample driver genes from the cancer omics data due to the lack of samples for each individual. To circumvent this problem, here we present a novel single-sample controller strategy (SCS) to identify personalized driver mutation profiles from network controllability perspective. Results: SCS integrates mutation data and expression data into a reference molecular network for each patient to obtain the driver mutation profiles in a personalized-sample manner. This is the first such a computational framework, to bridge the personalized driver mutation discovery problem and the structural network controllability problem. The key idea of SCS is to detect those mutated genes which can achieve the transition from the normal state to the disease state based on each individual omics data from network controllability perspective. We widely validate the driver mutation profiles of our SCS from three aspects: (i) the improved precision for the predicted driver genes in the population compared with other driver-focus methods; (ii) the effectiveness for discovering the personalized driver genes and (iii) the application to the risk assessment through the integration of the driver mutation signature and expression data, respectively, across the five distinct benchmarks from The Cancer Genome Atlas. In conclusion, our SCS makes efficient and robust personalized driver mutation profiles predictions, opening new avenues in personalized medicine and targeted cancer therapy.

电子版国际标准刊号1460-2059
WOS研究方向Biochemical Research Methods ; Biotechnology & Applied Microbiology ; Computer Science, Interdisciplinary Applications ; Mathematical & Computational Biology ; Statistics & Probability
语种英语
WOS记录号WOS:000434108800012
版本出版稿
源URL[http://202.127.25.143/handle/331003/3391]  
专题生化所2018年发文
通讯作者Zhang, Shao-Wu; Chen, Luonan
作者单位1.Northwestern Polytech Univ, Sch Automat, Minist Educ, Key Lab Informat Fus Technol, Xian 710072, Shaanxi, Peoples R China;
2.Univ Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Biochem & Cell Biol,Innovat Ctr Cell Signali, Key Lab Syst Biol,CAS Ctr Excellence Mol Cell Sci, Shanghai 200031, Peoples R China;
3.Baoji Univ Arts & Sci, Inst Phys & Optoelect Technol, Baoji 721013, Peoples R China;
4.Univ Tokyo, Inst Ind Sci, Collaborat Res Ctr Innovat Math Modelling, Tokyo 1538505, Japan
推荐引用方式
GB/T 7714
Guo, Wei-Feng,Zhang, Shao-Wu,Liu, Li-Li,et al. Discovering personalized driver mutation profiles of single samples in cancer by network control strategy[J]. BIOINFORMATICS,2018,34(11):1893-1903.
APA Guo, Wei-Feng.,Zhang, Shao-Wu.,Liu, Li-Li.,Liu, Fei.,Shi, Qian-Qian.,...&Chen, Luonan.(2018).Discovering personalized driver mutation profiles of single samples in cancer by network control strategy.BIOINFORMATICS,34(11),1893-1903.
MLA Guo, Wei-Feng,et al."Discovering personalized driver mutation profiles of single samples in cancer by network control strategy".BIOINFORMATICS 34.11(2018):1893-1903.

入库方式: OAI收割

来源:上海生物化学与细胞生物学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。