Joint spatial temporal attention for action recognition
文献类型:期刊论文
作者 | Tingzhao Yu1,2![]() ![]() ![]() ![]() ![]() ![]() |
刊名 | Pattern Recognition Letters
![]() |
出版日期 | 2018 |
期号 | 112页码:226-233 |
关键词 | Action Recognition Spatial-temporal Attention Two-stage |
英文摘要 | In this paper, we propose a novel high-level action representation using joint spatial-temporal attention model, with application to video-based human action recognition. Specifically, to extract robust motion representations of videos, a new spatial attention module based on 3D convolution is proposed, which can pay attention to the salient parts of the spatial areas. For better dealing with long-duration videos, a new bidirectional LSTM based temporal attention module is introduced, which aims to focus on the key video cubes instead of the key video frames of a given video. The spatial-temporal attention network can be jointly trained via a two-stage strategy, which enables us to simultaneously explore the correla- tion both in spatial and temporal domain. Experimental results on benchmark action recognition datasets demonstrate the effectiveness of our network. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/23618] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_遥感图像处理团队 |
通讯作者 | Tingzhao Yu |
作者单位 | 1.National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences 2.School of Computer and Control Engineering, University of Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Tingzhao Yu,Chaoxu Guo,Lingfeng Wang,et al. Joint spatial temporal attention for action recognition[J]. Pattern Recognition Letters,2018(112):226-233. |
APA | Tingzhao Yu,Chaoxu Guo,Lingfeng Wang,Huxiang Gu,Shiming Xiang,&Chunhong Pan.(2018).Joint spatial temporal attention for action recognition.Pattern Recognition Letters(112),226-233. |
MLA | Tingzhao Yu,et al."Joint spatial temporal attention for action recognition".Pattern Recognition Letters .112(2018):226-233. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。