Object Recognition, Localization and Grasp Detection Using a Unified Deep Convolutional Neural Network with Multi-task Loss
文献类型:会议论文
作者 | Qun, Jia1,2![]() ![]() ![]() ![]() ![]() ![]() |
出版日期 | 2018-12 |
会议日期 | 2018年12月12~15号 |
会议地点 | 吉隆坡 |
页码 | 1545-1550 |
英文摘要 | Recognize an object and detect a good grasp in unstructured scenes is still a challenge. In this paper, the problem of detecting robotic grasps is expressed by a two-point representation in an unstructured scene with an RGB-D camera. A deep Convolutional Neural Network is designed to predict good grasps in real-time on GTX1080, with using region proposal techniques. A contribution of this work is our proposed network framework can perform classification, location and grasp detection simultaneously so that in a single step, it not only recognizes the category and bounding-box of the object, but also finds a good grasp line. Besides, in training process, we minimize a multi-task loss objective function of object classification, location and grasp detection in order to train the network endto-end. Our experimental evaluation on a real robotic manipulator demonstrates that the robotic manipulator can fulfill the grasping task effectively. |
会议录 | IEEE International Conference on Robotics and Biomimetics
![]() |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/23604] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_先进机器人控制团队 自动化研究所_复杂系统管理与控制国家重点实验室 |
通讯作者 | Zhiqiang, Cao |
作者单位 | 1.中国科学院自动化研究所 2.中国科学院大学 |
推荐引用方式 GB/T 7714 | Qun, Jia,Zhiqiang, Cao,Xionglei, Zhao,et al. Object Recognition, Localization and Grasp Detection Using a Unified Deep Convolutional Neural Network with Multi-task Loss[C]. 见:. 吉隆坡. 2018年12月12~15号. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。