中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Object Recognition, Localization and Grasp Detection Using a Unified Deep Convolutional Neural Network with Multi-task Loss

文献类型:会议论文

作者Qun, Jia1,2; Zhiqiang, Cao1,2; Xionglei, Zhao1,2; Lei, Pang1,2; Yingying, Yu1,2; Junzhi, Yu1,2
出版日期2018-12
会议日期2018年12月12~15号
会议地点吉隆坡
页码1545-1550
英文摘要

Recognize an object and detect a good grasp in unstructured scenes is still a challenge. In this paper, the problem of detecting robotic grasps is expressed by a two-point representation in an unstructured scene with an RGB-D camera. A deep Convolutional Neural Network is designed to predict good grasps in real-time on GTX1080, with using region proposal techniques. A contribution of this work is our proposed network framework can perform classification, location and grasp detection simultaneously so that in a single step, it not only recognizes the category and bounding-box of the object, but also finds a good grasp line. Besides, in training process, we minimize a multi-task loss objective function of object classification, location and grasp detection in order to train the network endto-end. Our experimental evaluation on a real robotic manipulator demonstrates that the robotic manipulator can fulfill the grasping task effectively.

会议录IEEE International Conference on Robotics and Biomimetics
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/23604]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_先进机器人控制团队
自动化研究所_复杂系统管理与控制国家重点实验室
通讯作者Zhiqiang, Cao
作者单位1.中国科学院自动化研究所
2.中国科学院大学
推荐引用方式
GB/T 7714
Qun, Jia,Zhiqiang, Cao,Xionglei, Zhao,et al. Object Recognition, Localization and Grasp Detection Using a Unified Deep Convolutional Neural Network with Multi-task Loss[C]. 见:. 吉隆坡. 2018年12月12~15号.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。