Ground-based Cloud Classification by Learning Stable Local Binary Patterns
文献类型:期刊论文
作者 | Wang Y(王钰)![]() ![]() ![]() ![]() |
刊名 | Atmospheric Research
![]() |
出版日期 | 2018 |
期号 | 6页码:74-89 |
关键词 | Local Binary Patterns Feature Selection And Extraction Texture Image Cloud Classification |
英文摘要 | Feature selection and extraction is the first step in implementing pattern classification. The same is true for ground-based cloud classification. Histogram features based on local binary patterns (LBPs) are widely used to classify texture images. However, the conventional uniform LBP approach cannot capture all the dominant patterns in cloud texture images, thereby resulting in low classification performance. In this study, a robust feature extraction method by learning stable LBPs is proposed based on the averaged ranks of the occurrence |
源URL | [http://ir.ia.ac.cn/handle/173211/23636] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_影像分析与机器视觉团队 |
推荐引用方式 GB/T 7714 | Wang Y,Shi CZ,Wang CH,et al. Ground-based Cloud Classification by Learning Stable Local Binary Patterns[J]. Atmospheric Research,2018(6):74-89. |
APA | Wang Y,Shi CZ,Wang CH,&Xiao BH.(2018).Ground-based Cloud Classification by Learning Stable Local Binary Patterns.Atmospheric Research(6),74-89. |
MLA | Wang Y,et al."Ground-based Cloud Classification by Learning Stable Local Binary Patterns".Atmospheric Research .6(2018):74-89. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。