中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Traveling wave front for the Fisher equation on an infinite band region

文献类型:期刊论文

作者Wang, Jin-Liang; Li, Hui-Feng
刊名APPLIED MATHEMATICS LETTERS
出版日期2007-03-01
卷号20期号:3页码:296-300
关键词Traveling Wave Front Upper And Lower Solutions Monotone Method Fisher Logistic
ISSN号0893-9659
DOI10.1016/j.aml.2006.04.011
文献子类Article
英文摘要Instead of discussing the existence of a one-dimensional traveling wave front solution which connects two constant steady states, the present work deals with the case connecting a constant and a nonhomogeneous steady state on an infinite band region. The corresponding model is the well-known Fisher equation with variational coefficient and Dirichlet boundary condition. (c) 2006 Elsevier Ltd. All rights reserved.; Instead of discussing the existence of a one-dimensional traveling wave front solution which connects two constant steady states, the present work deals with the case connecting a constant and a nonhomogeneous steady state on an infinite band region. The corresponding model is the well-known Fisher equation with variational coefficient and Dirichlet boundary condition. (c) 2006 Elsevier Ltd. All rights reserved.
学科主题Mathematics, Applied
URL标识查看原文
语种英语
WOS记录号WOS:000244622100010
公开日期2010-12-24
源URL[http://ir.qdio.ac.cn/handle/337002/5237]  
专题海洋研究所_海洋环流与波动重点实验室
作者单位1.Chinese Acad Sci, Inst Oceanol, Ocean Current & Wave Lab, Qingdao 266071, Peoples R China
2.Qingdao Technol Univ, Coll Sci, Qingdao 266033, Peoples R China
推荐引用方式
GB/T 7714
Wang, Jin-Liang,Li, Hui-Feng. Traveling wave front for the Fisher equation on an infinite band region[J]. APPLIED MATHEMATICS LETTERS,2007,20(3):296-300.
APA Wang, Jin-Liang,&Li, Hui-Feng.(2007).Traveling wave front for the Fisher equation on an infinite band region.APPLIED MATHEMATICS LETTERS,20(3),296-300.
MLA Wang, Jin-Liang,et al."Traveling wave front for the Fisher equation on an infinite band region".APPLIED MATHEMATICS LETTERS 20.3(2007):296-300.

入库方式: OAI收割

来源:海洋研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。