Efficient volume exploration using the gaussian mixture model
文献类型:期刊论文
作者 | Wang, Yunhai1; Chen, Wei2; Zhang, Jian1; Dong, Tingxing3; Shan, Guihua1; Chi, Xuebin1 |
刊名 | Ieee transactions on visualization and computer graphics
![]() |
出版日期 | 2011-11-01 |
卷号 | 17期号:11页码:1560-1573 |
关键词 | Volume classification Volume rendering Gaussian mixture model Time-varying data Temporal coherence |
ISSN号 | 1077-2626 |
DOI | 10.1109/tvcg.2011.97 |
通讯作者 | Wang, yunhai(cloudseawang@gmail.com) |
英文摘要 | The multidimensional transfer function is a flexible and effective tool for exploring volume data. however, designing an appropriate transfer function is a trial-and-error process and remains a challenge. in this paper, we propose a novel volume exploration scheme that explores volumetric structures in the feature space by modeling the space using the gaussian mixture model (gmm). our new approach has three distinctive advantages. first, an initial feature separation can be automatically achieved through gmm estimation. second, the calculated gaussians can be directly mapped to a set of elliptical transfer functions (etfs), facilitating a fast pre-integrated volume rendering process. third, an inexperienced user can flexibly manipulate the etfs with the assistance of a suite of simple widgets, and discover potential features with several interactions. we further extend the gmm-based exploration scheme to time-varying data sets using an incremental gmm estimation algorithm. the algorithm estimates the gmm for one time step by using itself and the gmm generated from its previous steps. sequentially applying the incremental algorithm to all time steps in a selected time interval yields a preliminary classification for each time step. in addition, the computed etfs can be freely adjusted. the adjustments are then automatically propagated to other time steps. in this way, coherent user-guided exploration of a given time interval is achieved. our gpu implementation demonstrates interactive performance and good scalability. the effectiveness of our approach is verified on several data sets. |
WOS关键词 | TRANSFER-FUNCTION GENERATION ; TIME-VARYING DATA ; VISUALIZATION ; CLASSIFICATION |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Software Engineering |
语种 | 英语 |
WOS记录号 | WOS:000294556000003 |
出版者 | IEEE COMPUTER SOC |
URI标识 | http://www.irgrid.ac.cn/handle/1471x/2374141 |
专题 | 计算机网络信息中心 |
通讯作者 | Wang, Yunhai |
作者单位 | 1.Chinese Acad Sci, Supercomp Ctr, Comp Network Informat Ctr, Beijing 100190, Peoples R China 2.Zhejiang Univ, State Key Lab CAD & CG, Hangzhou 310058, Zhejiang, Peoples R China 3.Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA |
推荐引用方式 GB/T 7714 | Wang, Yunhai,Chen, Wei,Zhang, Jian,et al. Efficient volume exploration using the gaussian mixture model[J]. Ieee transactions on visualization and computer graphics,2011,17(11):1560-1573. |
APA | Wang, Yunhai,Chen, Wei,Zhang, Jian,Dong, Tingxing,Shan, Guihua,&Chi, Xuebin.(2011).Efficient volume exploration using the gaussian mixture model.Ieee transactions on visualization and computer graphics,17(11),1560-1573. |
MLA | Wang, Yunhai,et al."Efficient volume exploration using the gaussian mixture model".Ieee transactions on visualization and computer graphics 17.11(2011):1560-1573. |
入库方式: iSwitch采集
来源:计算机网络信息中心
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。