中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
An efficient data processing framework for mining the massive trajectory of moving objects

文献类型:期刊论文

作者Zhou, Yuanchun1; Zhang, Yang1; Ge, Yong2; Xue, Zhenghua1; Fu, Yanjie3; Guo, Danhuai1; Shao, Jing1; Zhu, Tiangang1; Wang, Xuezhi1; Li, Jianhui1
刊名Computers environment and urban systems
出版日期2017
卷号61页码:129-140
关键词Big data Trajectory of moving object Compression contribution model Parallel linear referencing Two step consistent hashing
ISSN号0198-9715
DOI10.1016/j.compenvurbsys.2015.03.004
通讯作者Li, jianhui(lijh@cnic.cn)
英文摘要Recently, there has been increasing development of positioning technology, which enables us to collect large scale trajectory data for moving objects. efficient processing and analysis of massive trajectory data has thus become an emerging and challenging task for both researchers and practitioners. therefore, in this paper, we propose an efficient data processing framework for mining massive trajectory data. this framework includes three modules: (1) a data distribution module, (2) a data transformation module, and (3) a high performance i/o module. specifically, we first design a two-step consistent hashing algorithm, which takes into account load balancing, data locality, and scalability, for a data distribution module. in the data transformation module, we present a parallel strategy of a linear referencing algorithm with reduced subtask coupling, easy-implemented parallelization, and low communication cost. moreover, we propose a compression-aware i/o module to improve the processing efficiency. finally, we conduct a comprehensive performance evaluation on a synthetic dataset (1.114 tb) and a real world taxi gps dataset (578 gb). the experimental results demonstrate the advantages of our proposed framework. (c) 2015 elsevier ltd. all rights reserved.
WOS研究方向Computer Science ; Engineering ; Environmental Sciences & Ecology ; Geography ; Operations Research & Management Science
WOS类目Computer Science, Interdisciplinary Applications ; Engineering, Environmental ; Environmental Studies ; Geography ; Operations Research & Management Science
语种英语
WOS记录号WOS:000390830200003
出版者ELSEVIER SCI LTD
URI标识http://www.irgrid.ac.cn/handle/1471x/2374195
专题计算机网络信息中心
通讯作者Li, Jianhui
作者单位1.Chinese Acad Sci, Comp Network Informat Ctr, Beijing, Peoples R China
2.Univ N Carolina, Dept Comp Sci, Charlotte, NC USA
3.Rutgers State Univ, MSIS Dept, Piscataway, NJ 08855 USA
推荐引用方式
GB/T 7714
Zhou, Yuanchun,Zhang, Yang,Ge, Yong,et al. An efficient data processing framework for mining the massive trajectory of moving objects[J]. Computers environment and urban systems,2017,61:129-140.
APA Zhou, Yuanchun.,Zhang, Yang.,Ge, Yong.,Xue, Zhenghua.,Fu, Yanjie.,...&Li, Jianhui.(2017).An efficient data processing framework for mining the massive trajectory of moving objects.Computers environment and urban systems,61,129-140.
MLA Zhou, Yuanchun,et al."An efficient data processing framework for mining the massive trajectory of moving objects".Computers environment and urban systems 61(2017):129-140.

入库方式: iSwitch采集

来源:计算机网络信息中心

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。