A parameter communication optimization strategy for distributed machine learning in sensors
文献类型:期刊论文
作者 | Zhang, Jilin1,2,3,4,5; Tu, Hangdi1,2; Ren, Yongjian1,2; Wan, Jian1,2,4,5; Zhou, Li1,2; Li, Mingwei1,2; Wang, Jue6; Yu, Lifeng7,8; Zhao, Chang1,2; Zhang, Lei9 |
刊名 | Sensors
![]() |
出版日期 | 2017-10-01 |
卷号 | 17期号:10页码:17 |
关键词 | Disturbed machine learning Sensors Dynamic synchronous parallel strategy (dsp) Parameter server (ps) |
ISSN号 | 1424-8220 |
DOI | 10.3390/s17102172 |
通讯作者 | Ren, yongjian(yongjian.ren@hdu.edu.cn) |
英文摘要 | In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. we extend the fault tolerance of iterative-convergent machine learning algorithms and propose the dynamic finite fault tolerance (dfft). based on the dfft, we implement a parameter communication optimization strategy for distributed machine learning, named dynamic synchronous parallel strategy (dsp), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the parameter server (ps). this strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors. |
WOS关键词 | BODY AREA NETWORKS ; FRAMEWORK ; LIFETIME |
WOS研究方向 | Chemistry ; Electrochemistry ; Instruments & Instrumentation |
WOS类目 | Chemistry, Analytical ; Electrochemistry ; Instruments & Instrumentation |
语种 | 英语 |
WOS记录号 | WOS:000414931500014 |
出版者 | MDPI AG |
URI标识 | http://www.irgrid.ac.cn/handle/1471x/2374255 |
专题 | 计算机网络信息中心 |
通讯作者 | Ren, Yongjian |
作者单位 | 1.Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou 310018, Zhejiang, Peoples R China 2.Minist Educ, Key Lab Complex Syst Modeling & Simulat, Hangzhou 310018, Zhejiang, Peoples R China 3.Zhejiang Univ, Coll Elect Engn, Hangzhou 310058, Zhejiang, Peoples R China 4.Zhejiang Univ Sci & Technol, Sch Informat & Elect Engn, Hangzhou 310023, Zhejiang, Peoples R China 5.Zhejiang Prov Engn Ctr Media Data Cloud Proc & An, Hangzhou 310018, Zhejiang, Peoples R China 6.Chinese Acad Sci, Supercomp Ctr Comp Network Informat Ctr, Beijing 100190, Peoples R China 7.Hithink RoyalFlush Informat Network Co Ltd, Hangzhou 310023, Zhejiang, Peoples R China 8.Financial Informat Engn Technol Res Ctr Zhejiang, Hangzhou 310023, Zhejiang, Peoples R China 9.Beijing Univ Civil Engn & Architecture, Dept Comp Sci, Beijing 100044, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Jilin,Tu, Hangdi,Ren, Yongjian,et al. A parameter communication optimization strategy for distributed machine learning in sensors[J]. Sensors,2017,17(10):17. |
APA | Zhang, Jilin.,Tu, Hangdi.,Ren, Yongjian.,Wan, Jian.,Zhou, Li.,...&Zhang, Lei.(2017).A parameter communication optimization strategy for distributed machine learning in sensors.Sensors,17(10),17. |
MLA | Zhang, Jilin,et al."A parameter communication optimization strategy for distributed machine learning in sensors".Sensors 17.10(2017):17. |
入库方式: iSwitch采集
来源:计算机网络信息中心
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。