中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
An experimental seasonal hydrological forecasting system over the yellow river basin - part 1: understanding the role of initial hydrological conditions

文献类型:期刊论文

作者Yuan, Xing1; Ma, Feng1,2; Wang, Linying1,3; Zheng, Ziyan1; Ma, Zhuguo1; Ye, Aizhong2; Peng, Shaoming4
刊名Hydrology and earth system sciences
出版日期2016
卷号20期号:6页码:2437-2451
ISSN号1027-5606
DOI10.5194/hess-20-2437-2016
通讯作者Yuan, xing(yuanxing@tea.ac.cn)
英文摘要The hydrological cycle over the yellow river has been altered by the climate change and human interventions greatly during past decades, with a decadal drying trend mixed with a large variation of seasonal hydrological extremes. to provide support for the adaptation to a changing environment, an experimental seasonal hydrological forecasting system is established over the yellow river basin. the system draws from a legacy of a global hydrological forecasting system that is able to make use of real-time seasonal climate predictions from north american multimodel ensemble (nmme) climate models through a statistical downscaling approach but with a higher resolution and a spatially disaggregated calibration procedure that is based on a newly compiled hydrological observation dataset with 5 decades of naturalized streamflow at 12 mainstream gauges and a newly released meteorological observation dataset including 324 meteorological stations over the yellow river basin. while the evaluation of the nmme-based seasonal hydrological forecasting will be presented in a companion paper to explore the added values from climate forecast models, this paper investigates the role of initial hydrological conditions (ics) by carrying out 6-month ensemble streamflow prediction (esp) and reverse esp-type simulations for each calendar month during 1982-2010 with the hydrological models in the forecasting system, i.e., a large-scale land surface hydrological model and a global routing model that is regionalized over the yellow river. in terms of streamflow predictability, the ics outweigh the meteorological forcings up to 2-5 months during the cold and dry seasons, but the latter prevails over the former in the predictability after the first month during the warm and wet seasons. for the streamflow forecasts initialized at the end of the rainy season, the influence of ics for lower reaches of the yellow river can be 5 months longer than that for the upper reaches, while such a difference drops to 1 month during the rainy season. based on an additional esp-type simulation without the initialization of the river routing model, it is found that the initial surface water state is the main source of streamflow predictability during the first month, beyond which other sources of terrestrial memory become more important. during the dry/wet periods, the dominance of ics on the streamflow predictability can be extended by a month even in the rainy season, suggesting the usefulness of the esp forecasting approach after the onset of the hydrological extreme events. similar results are found for the soil moisture predictability but with longer influences from ics. and the simulations indicate that the soil moisture memory is longer over the middle reaches than those over the upper and lower reaches of the yellow river. the naturalized hydrological predictability analysis in this study will provide a guideline for establishing an operational hydrological forecasting system as well as for managing the risks of hydrological extremes over the yellow river basin.
WOS关键词ENSEMBLE PREDICTION SYSTEM ; EASTERN UNITED-STATES ; SOIL-MOISTURE ; WATER-RESOURCES ; STREAMFLOW FORECASTS ; PREDICTABILITY ; CHINA ; SKILL ; UNCERTAINTY ; MODEL
WOS研究方向Geology ; Water Resources
WOS类目Geosciences, Multidisciplinary ; Water Resources
语种英语
WOS记录号WOS:000379419500019
出版者COPERNICUS GESELLSCHAFT MBH
URI标识http://www.irgrid.ac.cn/handle/1471x/2374606
专题中国科学院大学
通讯作者Yuan, Xing
作者单位1.Chinese Acad Sci, Inst Atmospher Phys, RCE TEA, Beijing 100029, Peoples R China
2.Beijing Normal Univ, Coll Global Change & Earth Syst Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.Yellow River Engn Consulting Co Ltd, Zhengzhou 450003, Peoples R China
推荐引用方式
GB/T 7714
Yuan, Xing,Ma, Feng,Wang, Linying,et al. An experimental seasonal hydrological forecasting system over the yellow river basin - part 1: understanding the role of initial hydrological conditions[J]. Hydrology and earth system sciences,2016,20(6):2437-2451.
APA Yuan, Xing.,Ma, Feng.,Wang, Linying.,Zheng, Ziyan.,Ma, Zhuguo.,...&Peng, Shaoming.(2016).An experimental seasonal hydrological forecasting system over the yellow river basin - part 1: understanding the role of initial hydrological conditions.Hydrology and earth system sciences,20(6),2437-2451.
MLA Yuan, Xing,et al."An experimental seasonal hydrological forecasting system over the yellow river basin - part 1: understanding the role of initial hydrological conditions".Hydrology and earth system sciences 20.6(2016):2437-2451.

入库方式: iSwitch采集

来源:中国科学院大学

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。