Optimal lower bound for the first eigenvalue of the fourth order equation
文献类型:期刊论文
作者 | Meng, Gang1; Yan, Ping2 |
刊名 | Journal of differential equations
![]() |
出版日期 | 2016-09-15 |
卷号 | 261期号:6页码:3149-3168 |
关键词 | Eigenvalue The fourth order equation Integrable potential Minimization problem Optimal lower bound |
ISSN号 | 0022-0396 |
DOI | 10.1016/j.jde.2016.05.018 |
通讯作者 | Meng, gang(menggang@ucas.ac.cn) |
英文摘要 | In this paper we will find optimal lower bound for the first eigenvalue of the fourth order equation with integrable potentials when the l-1 norm of potentials is known. we establish the minimization characterization for the first eigenvalue of the measure differential equation, which plays an important role in the extremal problem of ordinary differential equation. the conclusion of this paper will illustrate a new and very interesting phenomenon that the minimizing measures will no longer be located at the center of the interval when the norm is large enough. (c) 2016 elsevier inc. all rights reserved. |
WOS关键词 | MEASURE DIFFERENTIAL-EQUATIONS ; INTEGRABLE POTENTIALS ; EXTREMAL PROBLEMS ; P-LAPLACIAN ; MINIMIZATION |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000381062700009 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
URI标识 | http://www.irgrid.ac.cn/handle/1471x/2375144 |
专题 | 中国科学院大学 |
通讯作者 | Meng, Gang |
作者单位 | 1.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China 2.Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China |
推荐引用方式 GB/T 7714 | Meng, Gang,Yan, Ping. Optimal lower bound for the first eigenvalue of the fourth order equation[J]. Journal of differential equations,2016,261(6):3149-3168. |
APA | Meng, Gang,&Yan, Ping.(2016).Optimal lower bound for the first eigenvalue of the fourth order equation.Journal of differential equations,261(6),3149-3168. |
MLA | Meng, Gang,et al."Optimal lower bound for the first eigenvalue of the fourth order equation".Journal of differential equations 261.6(2016):3149-3168. |
入库方式: iSwitch采集
来源:中国科学院大学
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。