中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Improved superpixel-based polarimetric synthetic aperture radar image classification integrating color features

文献类型:期刊论文

作者Xing, Yanxiao1,2; Zhang, Yi1; Li, Ning1; Wang, Robert1; Hu, Guixiang1,2
刊名Journal of applied remote sensing
出版日期2016-05-27
卷号10页码:15
关键词Polarimetric synthetic aperture radar Color features Polarimetric decomposition Superpixel Simple linear iterative clustering Image classification
ISSN号1931-3195
DOI10.1117/1.jrs.10.026026
通讯作者Li, ning(lining_nuaa@163.com)
英文摘要Various polarimetric features including scattering matrix, covariance matrix, polarimetric decomposition results, and textural or spatial information have already been used for polarimetric synthetic aperture radar (polsar) image classification. however, color features are rarely involved. we propose an improved superpixel-based polsar image classification integrating color features. first, we extract the color information using polarimetric decomposition. second, by combining the color and spatial information of pixels, modified simple linear iterative clustering is used to generate small regions called superpixels. then we apply wishart distance to the superpixels to classify them into different classes. this method is demonstrated using the l-band flevoland polsar data from airsar and oberpfaffenhofen polsar data from esar. the results show that this method works well for areas with homogeneous terrains like farms in terms of both classification accuracy and computational efficiency. furthermore, the success of the proposed method signifies that more color features can be discovered in the future research works. (c) 2016 society of photo-optical instrumentation engineers (spie).
WOS关键词SAR IMAGES ; SEGMENTATION ; DECOMPOSITION
WOS研究方向Environmental Sciences & Ecology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Environmental Sciences ; Remote Sensing ; Imaging Science & Photographic Technology
语种英语
WOS记录号WOS:000383197100001
出版者SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
URI标识http://www.irgrid.ac.cn/handle/1471x/2376187
专题中国科学院大学
通讯作者Li, Ning
作者单位1.Chinese Acad Sci, Inst Elect, Dept Space Microwave Remote Sensing Syst, 19,North 4th Ring Rd West, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100039, Peoples R China
推荐引用方式
GB/T 7714
Xing, Yanxiao,Zhang, Yi,Li, Ning,et al. Improved superpixel-based polarimetric synthetic aperture radar image classification integrating color features[J]. Journal of applied remote sensing,2016,10:15.
APA Xing, Yanxiao,Zhang, Yi,Li, Ning,Wang, Robert,&Hu, Guixiang.(2016).Improved superpixel-based polarimetric synthetic aperture radar image classification integrating color features.Journal of applied remote sensing,10,15.
MLA Xing, Yanxiao,et al."Improved superpixel-based polarimetric synthetic aperture radar image classification integrating color features".Journal of applied remote sensing 10(2016):15.

入库方式: iSwitch采集

来源:中国科学院大学

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。