Improved superpixel-based polarimetric synthetic aperture radar image classification integrating color features
文献类型:期刊论文
作者 | Xing, Yanxiao1,2; Zhang, Yi1; Li, Ning1; Wang, Robert1; Hu, Guixiang1,2 |
刊名 | Journal of applied remote sensing
![]() |
出版日期 | 2016-05-27 |
卷号 | 10页码:15 |
关键词 | Polarimetric synthetic aperture radar Color features Polarimetric decomposition Superpixel Simple linear iterative clustering Image classification |
ISSN号 | 1931-3195 |
DOI | 10.1117/1.jrs.10.026026 |
通讯作者 | Li, ning(lining_nuaa@163.com) |
英文摘要 | Various polarimetric features including scattering matrix, covariance matrix, polarimetric decomposition results, and textural or spatial information have already been used for polarimetric synthetic aperture radar (polsar) image classification. however, color features are rarely involved. we propose an improved superpixel-based polsar image classification integrating color features. first, we extract the color information using polarimetric decomposition. second, by combining the color and spatial information of pixels, modified simple linear iterative clustering is used to generate small regions called superpixels. then we apply wishart distance to the superpixels to classify them into different classes. this method is demonstrated using the l-band flevoland polsar data from airsar and oberpfaffenhofen polsar data from esar. the results show that this method works well for areas with homogeneous terrains like farms in terms of both classification accuracy and computational efficiency. furthermore, the success of the proposed method signifies that more color features can be discovered in the future research works. (c) 2016 society of photo-optical instrumentation engineers (spie). |
WOS关键词 | SAR IMAGES ; SEGMENTATION ; DECOMPOSITION |
WOS研究方向 | Environmental Sciences & Ecology ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS类目 | Environmental Sciences ; Remote Sensing ; Imaging Science & Photographic Technology |
语种 | 英语 |
WOS记录号 | WOS:000383197100001 |
出版者 | SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS |
URI标识 | http://www.irgrid.ac.cn/handle/1471x/2376187 |
专题 | 中国科学院大学 |
通讯作者 | Li, Ning |
作者单位 | 1.Chinese Acad Sci, Inst Elect, Dept Space Microwave Remote Sensing Syst, 19,North 4th Ring Rd West, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100039, Peoples R China |
推荐引用方式 GB/T 7714 | Xing, Yanxiao,Zhang, Yi,Li, Ning,et al. Improved superpixel-based polarimetric synthetic aperture radar image classification integrating color features[J]. Journal of applied remote sensing,2016,10:15. |
APA | Xing, Yanxiao,Zhang, Yi,Li, Ning,Wang, Robert,&Hu, Guixiang.(2016).Improved superpixel-based polarimetric synthetic aperture radar image classification integrating color features.Journal of applied remote sensing,10,15. |
MLA | Xing, Yanxiao,et al."Improved superpixel-based polarimetric synthetic aperture radar image classification integrating color features".Journal of applied remote sensing 10(2016):15. |
入库方式: iSwitch采集
来源:中国科学院大学
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。