中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
L-p ([0,1])-characterizations of multi-knot piecewise linear spectral sequences

文献类型:期刊论文

作者Lian Qiaofang; Cheng Linfeng; Yan Dunyan
刊名Progress in natural science
出版日期2006-07-01
卷号16期号:7页码:684-690
关键词Exponential bases Multi-knot piecewise linear spectral sequences Unconditional bases
ISSN号1002-0071
通讯作者Yan dunyan(ydunyan@gucas.ac.cn)
英文摘要There exists a class of new orthonormal basis for l-2( [0, 1]), whose exponential parts are multi-knot piecewise linear functions called spectral sequences. in this paper, we show that these bases constitute bases, but not unconditional bases, for l ( [ 0, 1 1) with 1 < p < infinity, p not equal 2. in addition, we give the corresponding convergence theorem in l-p, carleson-hunt theorem on almost everywhere convergence, littlewood-paley theorem and poisson summation formula related to these bases.
WOS关键词SERIES
WOS研究方向Materials Science ; Science & Technology - Other Topics
WOS类目Materials Science, Multidisciplinary ; Multidisciplinary Sciences
语种英语
WOS记录号WOS:000239697500003
出版者TAYLOR & FRANCIS LTD
URI标识http://www.irgrid.ac.cn/handle/1471x/2379319
专题中国科学院大学
通讯作者Yan Dunyan
作者单位1.Chinese Acad Sci, Sch Informat Sci & Engn, Beijing 100080, Peoples R China
2.China Univ Min & Technol, Xuzhou 221008, Peoples R China
3.Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
推荐引用方式
GB/T 7714
Lian Qiaofang,Cheng Linfeng,Yan Dunyan. L-p ([0,1])-characterizations of multi-knot piecewise linear spectral sequences[J]. Progress in natural science,2006,16(7):684-690.
APA Lian Qiaofang,Cheng Linfeng,&Yan Dunyan.(2006).L-p ([0,1])-characterizations of multi-knot piecewise linear spectral sequences.Progress in natural science,16(7),684-690.
MLA Lian Qiaofang,et al."L-p ([0,1])-characterizations of multi-knot piecewise linear spectral sequences".Progress in natural science 16.7(2006):684-690.

入库方式: iSwitch采集

来源:中国科学院大学

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。