L-p ([0,1])-characterizations of multi-knot piecewise linear spectral sequences
文献类型:期刊论文
作者 | Lian Qiaofang; Cheng Linfeng; Yan Dunyan |
刊名 | Progress in natural science
![]() |
出版日期 | 2006-07-01 |
卷号 | 16期号:7页码:684-690 |
关键词 | Exponential bases Multi-knot piecewise linear spectral sequences Unconditional bases |
ISSN号 | 1002-0071 |
通讯作者 | Yan dunyan(ydunyan@gucas.ac.cn) |
英文摘要 | There exists a class of new orthonormal basis for l-2( [0, 1]), whose exponential parts are multi-knot piecewise linear functions called spectral sequences. in this paper, we show that these bases constitute bases, but not unconditional bases, for l ( [ 0, 1 1) with 1 < p < infinity, p not equal 2. in addition, we give the corresponding convergence theorem in l-p, carleson-hunt theorem on almost everywhere convergence, littlewood-paley theorem and poisson summation formula related to these bases. |
WOS关键词 | SERIES |
WOS研究方向 | Materials Science ; Science & Technology - Other Topics |
WOS类目 | Materials Science, Multidisciplinary ; Multidisciplinary Sciences |
语种 | 英语 |
WOS记录号 | WOS:000239697500003 |
出版者 | TAYLOR & FRANCIS LTD |
URI标识 | http://www.irgrid.ac.cn/handle/1471x/2379319 |
专题 | 中国科学院大学 |
通讯作者 | Yan Dunyan |
作者单位 | 1.Chinese Acad Sci, Sch Informat Sci & Engn, Beijing 100080, Peoples R China 2.China Univ Min & Technol, Xuzhou 221008, Peoples R China 3.Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China |
推荐引用方式 GB/T 7714 | Lian Qiaofang,Cheng Linfeng,Yan Dunyan. L-p ([0,1])-characterizations of multi-knot piecewise linear spectral sequences[J]. Progress in natural science,2006,16(7):684-690. |
APA | Lian Qiaofang,Cheng Linfeng,&Yan Dunyan.(2006).L-p ([0,1])-characterizations of multi-knot piecewise linear spectral sequences.Progress in natural science,16(7),684-690. |
MLA | Lian Qiaofang,et al."L-p ([0,1])-characterizations of multi-knot piecewise linear spectral sequences".Progress in natural science 16.7(2006):684-690. |
入库方式: iSwitch采集
来源:中国科学院大学
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。