A current density conservative scheme for incompressible mhd flows at a low magnetic reynolds number. part ii: on an arbitrary collocated mesh
文献类型:期刊论文
作者 | Ni, Ming-Jiu; Munipalli, Ramakanth; Huang, Peter; Morley, Neil B.; Abdou, Mohamed A. |
刊名 | Journal of computational physics
![]() |
出版日期 | 2007-11-10 |
卷号 | 227期号:1页码:205-228 |
关键词 | Conservative formula of the lorentz force Consistent and conservative scheme Projection method Mhd |
ISSN号 | 0021-9991 |
DOI | 10.1016/j.jcp.2007.07.023 |
通讯作者 | Ni, ming-jiu(mjni@gucas.ac.cn) |
英文摘要 | A conservative formulation of the lorentz force is given here for magnetohydrodynarnic (mhd) flows at a low magnetic reynolds number with the current density calculated based on ohm's law and the electrical potential formula. this conservative formula shows that the total momentum contributed from the lorentz force is conservative when the applied magnetic field is constant. for the case with a non-constant applied magnetic field, the lorentz force has been divided into two parts: a strong globally conservative part and a weak locally conservative part. the conservative formula has been employed to develop a conservative scheme for the calculation of the lorentz force on an unstructured collocated mesh. only the current density fluxes on the cell faces, which are calculated using a consistent scheme with good conservation, are needed for the calculation of the lorentz force. meanwhile, a conservative interpolation technique is designed to get the current density at the cell center from the current density fluxes on the cell faces. this conservative interpolation can keep the current density at the cell center conservative, which can be used to calculate the lorentz force at the cell center with good accuracy. the lorentz force calculated from the conservative current at the cell center is equivalent to the lorentz force from the conservative formula when the applied magnetic field is constant, which can conserve the total momentum. we will further prove that the simple interpolation scheme used in the part i [m.-j. ni, r. munipalli, n.b. morley, p.y. huang, m. abdou, a current density conservative scheme for mhd flows at a low magnetic reynolds number. part i. on a rectangular collocated grid system, journal of computational physics, in press, doi:10.10 1 6/j.jcp.2007.07.025] of this series of papers is conservative on a rectangular grid and can keep the total momentum conservative in a rectangular grid. (c) 2007 elsevier inc. all rights reserved. |
WOS关键词 | NAVIER-STOKES EQUATIONS ; LIQUID-METAL ; RECTANGULAR DUCTS ; SIMULATION ; WALLS ; FIELD ; STEP |
WOS研究方向 | Computer Science ; Physics |
WOS类目 | Computer Science, Interdisciplinary Applications ; Physics, Mathematical |
语种 | 英语 |
WOS记录号 | WOS:000251140100011 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
URI标识 | http://www.irgrid.ac.cn/handle/1471x/2382748 |
专题 | 中国科学院大学 |
通讯作者 | Ni, Ming-Jiu |
作者单位 | 1.Grad Univ, Chinese Acad Sci, Dept Phys, Beijing 100049, Peoples R China 2.Univ Calif Los Angeles, MAE Dept, Los Angeles, CA 90095 USA 3.HyperComp Inc, Westlake Village, CA 91362 USA |
推荐引用方式 GB/T 7714 | Ni, Ming-Jiu,Munipalli, Ramakanth,Huang, Peter,et al. A current density conservative scheme for incompressible mhd flows at a low magnetic reynolds number. part ii: on an arbitrary collocated mesh[J]. Journal of computational physics,2007,227(1):205-228. |
APA | Ni, Ming-Jiu,Munipalli, Ramakanth,Huang, Peter,Morley, Neil B.,&Abdou, Mohamed A..(2007).A current density conservative scheme for incompressible mhd flows at a low magnetic reynolds number. part ii: on an arbitrary collocated mesh.Journal of computational physics,227(1),205-228. |
MLA | Ni, Ming-Jiu,et al."A current density conservative scheme for incompressible mhd flows at a low magnetic reynolds number. part ii: on an arbitrary collocated mesh".Journal of computational physics 227.1(2007):205-228. |
入库方式: iSwitch采集
来源:中国科学院大学
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。