中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Unsupervised texture classification: automatically discover and classify texture patterns

文献类型:期刊论文

作者Qin, Lei1,2; Zheng, Qingfang1; Jiang, Shuqiang1; Huang, Qingining1,2; Gao, Wen1,3
刊名Image and vision computing
出版日期2008-05-01
卷号26期号:5页码:647-656
关键词Unsupervised texture classification Nmf Plsi Invariant descriptor
ISSN号0262-8856
DOI10.1016/j.imavis.2007.08.003
通讯作者Qin, lei(lqin@jdl.ac.cn)
英文摘要In this paper, we present a novel approach to classify texture collections. this approach does not require experts to provide annotated training set. given the image collection, we extract a set of invariant descriptors from each image. the descriptors of all images are veetor-quantized to form 'keypoints'. then we represent the texture images by 'bag-of-keypoints' vectors. by analogy text classification, we use probabilistic latent semantic indexing (plsi) and non-negative matrix factorization (nmf) to perform unsupervised classification. the proposed approach is evaluated using the uiuc database which contains significant viewpoint and scale changes. we also report the results for simultaneously classifying i i i texture categories using the brodatz database. the performances of classifying new images using the parameters learnt from the unannotated image collection are also presented. the experiment results clearly demonstrate that the approach is robust to scale and viewpoint changes, and achieves good classification accuracy even without annotated training set. (c) 2007 elsevier b.v. all rights reserved.
WOS关键词NONNEGATIVE MATRIX FACTORIZATION ; RETRIEVAL
WOS研究方向Computer Science ; Engineering ; Optics
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Optics
语种英语
WOS记录号WOS:000254686900005
出版者ELSEVIER SCIENCE BV
URI标识http://www.irgrid.ac.cn/handle/1471x/2388192
专题中国科学院大学
通讯作者Qin, Lei
作者单位1.Chinese Acad Sci, Inst Computing Technol, Beijing, Peoples R China
2.Chinese Acad Sci, Grad Sch, Beijing, Peoples R China
3.Peking Univ, Sch Elect Engn & Comp Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Qin, Lei,Zheng, Qingfang,Jiang, Shuqiang,et al. Unsupervised texture classification: automatically discover and classify texture patterns[J]. Image and vision computing,2008,26(5):647-656.
APA Qin, Lei,Zheng, Qingfang,Jiang, Shuqiang,Huang, Qingining,&Gao, Wen.(2008).Unsupervised texture classification: automatically discover and classify texture patterns.Image and vision computing,26(5),647-656.
MLA Qin, Lei,et al."Unsupervised texture classification: automatically discover and classify texture patterns".Image and vision computing 26.5(2008):647-656.

入库方式: iSwitch采集

来源:中国科学院大学

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。