中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Prediction of peptidase category based on functional domain composition

文献类型:期刊论文

作者Xu, XiaoChun2; Yu, Dong2; Fang, Wei2; Cheng, Yushao3; Qian, Ziliang4,5; Lu, WenCong6; Cai, Yudong1; Feng, Kaiyan7
刊名Journal of proteome research
出版日期2008-10-01
卷号7期号:10页码:4521-4524
关键词Peptidases The nearest neighbor algorithm Blast Functional domain composition
ISSN号1535-3893
DOI10.1021/pr800292w
通讯作者Cai, yudong(cyd@picb.ac.cn)
英文摘要Peptidases play pivotal regulatory roles in conception, birth, digestion, growth, maturation, aging, and death of all organisms. these regulatory roles include activation, synthesis and turnover of proteins. in the proteomics era, computational methods to identify peptidases and catalog the peptidases into six different major classes-aspartic peptidases, cysteine peptidases, glutamic peptidases, metallo peptidases, serine peptidases and threonine peptidases-can give an instant glance at the biological functions of a newly identified protein. in this contribution, by combining the nearest neighbor algorithm and the functional domain composition, we introduce both an automatic peptidase identifier and an automatic peptidase classier. the successful identification and classification rates are 93.7% and 96.5% for our peptidase identifier and peptidase classifier, respectively. free online peptidase identifier and peptidase classifier are provided on our web page http://pcal.biosino.org/protease_classification.html.
WOS关键词PROTEIN SUBCELLULAR LOCATION ; NEAREST-NEIGHBOR ALGORITHM ; AMINO-ACID-COMPOSITION ; CLASSIFICATION ; LOCALIZATION ; DATABASE
WOS研究方向Biochemistry & Molecular Biology
WOS类目Biochemical Research Methods
语种英语
WOS记录号WOS:000259784300030
出版者AMER CHEMICAL SOC
URI标识http://www.irgrid.ac.cn/handle/1471x/2388641
专题中国科学院大学
通讯作者Cai, Yudong
作者单位1.Chinese Acad Sci, Shanghai Inst Biol Sci, CAS MPG Partner Inst Computat Biol, Shanghai 200031, Peoples R China
2.Huazhong Univ Sci & Technol, Dept Life Sci & Technol, Wuhan 430074, Peoples R China
3.Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
4.Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
5.Chinese Acad Sci, Shanghai Inst Biol Sci, Key Lab Mol Syst Biol, Bioinformat Ctr, Shanghai 200031, Peoples R China
6.Shanghai Univ, Coll Sci, Dept Chem, Lab Chem Data Min, Shanghai 200444, Peoples R China
7.Univ Manchester, Div Imaging Sci & Biomed Engn, Manchester M13 9PT, Lancs, England
推荐引用方式
GB/T 7714
Xu, XiaoChun,Yu, Dong,Fang, Wei,et al. Prediction of peptidase category based on functional domain composition[J]. Journal of proteome research,2008,7(10):4521-4524.
APA Xu, XiaoChun.,Yu, Dong.,Fang, Wei.,Cheng, Yushao.,Qian, Ziliang.,...&Feng, Kaiyan.(2008).Prediction of peptidase category based on functional domain composition.Journal of proteome research,7(10),4521-4524.
MLA Xu, XiaoChun,et al."Prediction of peptidase category based on functional domain composition".Journal of proteome research 7.10(2008):4521-4524.

入库方式: iSwitch采集

来源:中国科学院大学

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。