中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A density-based method for adaptive lda model selection

文献类型:期刊论文

作者Cao, Juan1,2; Xia, Tian1,2; Li, Jintao1; Zhang, Yongdong1; Tang, Sheng1
刊名Neurocomputing
出版日期2009-03-01
卷号72期号:7-9页码:1775-1781
关键词Latent dirichlet allocation Topic model Topic
ISSN号0925-2312
DOI10.1016/j.neucom.2008.06.011
通讯作者Cao, juan(caojuan@ict.ac.cn)
英文摘要Topic models have been successfully used in information classification and retrieval. these models can capture word correlations in a collection of textual documents with a low-dimensional set of multinomial distribution, called "topics". however, it is important but difficult to select the appropriate number of topics for a specific dataset. in this paper, we study the inherent connection between the best topic structure and the distances among topics in latent dirichlet allocation (lda), and propose a method of adaptively selecting the best lda model based on density. experiments show that the proposed method can achieve performance matching the best of lda without manually tuning the number of topics. (c) 2008 elsevier b.v. all rights reserved.
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
语种英语
WOS记录号WOS:000264993200041
出版者ELSEVIER SCIENCE BV
URI标识http://www.irgrid.ac.cn/handle/1471x/2401132
专题中国科学院大学
通讯作者Cao, Juan
作者单位1.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing 100080, Peoples R China
2.Chinese Acad Sci, Grad Univ, Beijing 100039, Peoples R China
推荐引用方式
GB/T 7714
Cao, Juan,Xia, Tian,Li, Jintao,et al. A density-based method for adaptive lda model selection[J]. Neurocomputing,2009,72(7-9):1775-1781.
APA Cao, Juan,Xia, Tian,Li, Jintao,Zhang, Yongdong,&Tang, Sheng.(2009).A density-based method for adaptive lda model selection.Neurocomputing,72(7-9),1775-1781.
MLA Cao, Juan,et al."A density-based method for adaptive lda model selection".Neurocomputing 72.7-9(2009):1775-1781.

入库方式: iSwitch采集

来源:中国科学院大学

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。