Valuations on arithmetic surfaces
文献类型:期刊论文
作者 | Xu Ning |
刊名 | Science in china series a-mathematics
![]() |
出版日期 | 2009 |
卷号 | 52期号:1页码:66-76 |
关键词 | Valuation Height Rank Totally ordered group Big field Transcendental number |
ISSN号 | 1006-9283 |
DOI | 10.1007/s11425-008-0093-0 |
通讯作者 | Xu ning(xning623@163.com) |
英文摘要 | In this paper, we give the definition of the height of a valuation and the definition of the big field c(p, g), where p is a prime and g subset of r is an additive subgroup containing 1. we conclude that c(p,g) is a field and c(p,g) is algebraically closed. based on this the author obtains the complete classification of valuations on arithmetic surfaces. furthermore, for any m <= n is an element of z, let vm, n be an r-vector space of dimension n - m + 1, whose coordinates are indexed from m to n. we generalize the definition of c(p, g), where p is a prime and g subset of v(m,n) is an additive subgroup containing 1. we also conclude that c(p, g) is a field if m <= 0 <= n. |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied ; Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000264272900005 |
出版者 | SCIENCE PRESS |
URI标识 | http://www.irgrid.ac.cn/handle/1471x/2402251 |
专题 | 中国科学院大学 |
通讯作者 | Xu Ning |
作者单位 | Chinese Acad Sci, Grad Sch, Dept Math, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Xu Ning. Valuations on arithmetic surfaces[J]. Science in china series a-mathematics,2009,52(1):66-76. |
APA | Xu Ning.(2009).Valuations on arithmetic surfaces.Science in china series a-mathematics,52(1),66-76. |
MLA | Xu Ning."Valuations on arithmetic surfaces".Science in china series a-mathematics 52.1(2009):66-76. |
入库方式: iSwitch采集
来源:中国科学院大学
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。