中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Predicting mirna's target from primary structure by the nearest neighbor algorithm

文献类型:期刊论文

作者Lin, Kao1; Qian, Ziliang2,3; Lu, Lin; Lu, Lingyi; Lai, Lihui5; Gu, Jieyi5; Zeng, Zhenbing6; Li, Haipeng1; Cai, Yudong7
刊名Molecular diversity
出版日期2010-11-01
卷号14期号:4页码:719-729
关键词Mirna Target Predict Nearest neighbor algorithm Minimum redundancy maximum relevance Properties forward selection
ISSN号1381-1991
DOI10.1007/s11030-009-9216-y
通讯作者Li, haipeng(lihaipeng@picb.ac.cn)
英文摘要We used a machine learning method, the nearest neighbor algorithm (nna), to learn the relationship between mirnas and their target proteins, generating a predictor which can then judge whether a new mirna-target pair is true or not. we acquired 198 positive (true) mirna-target pairs from tarbase and the literature, and generated 4,888 negative (false) pairs through random combination. a 0/1 system and the frequencies of single nucleotides and di-nucleotides were used to encode mirnas into vectors while various physicochemical parameters were used to encode the targets. the nna was then applied, learning from these data to produce a predictor. we implemented minimum redundancy maximum relevance (mrmr) and properties forward selection (pfs) to reduce the redundancy of our encoding system, obtaining 91 most efficient properties. finally, via the jackknife cross-validation test, we got a positive accuracy of 69.2% and an overall accuracy of 96.0% with all the 253 properties. besides, we got a positive accuracy of 83.8% and an overall accuracy of 97.2% with the 91 most efficient properties. a web-server for predictions is also made available at http://app3.biosino.org:8080/mirtp/index.jsp.
WOS关键词PROTEIN-PROTEIN INTERACTIONS ; DNA-BINDING PROTEINS ; MICRORNA TARGETS ; CLASSIFICATION ; SEQUENCE ; INFORMATION ; EXPRESSION ; SIRNAS ; SERVER ; GENES
WOS研究方向Biochemistry & Molecular Biology ; Chemistry ; Pharmacology & Pharmacy
WOS类目Biochemistry & Molecular Biology ; Chemistry, Applied ; Chemistry, Medicinal ; Chemistry, Multidisciplinary
语种英语
WOS记录号WOS:000284598600012
出版者SPRINGER
URI标识http://www.irgrid.ac.cn/handle/1471x/2407147
专题中国科学院大学
通讯作者Li, Haipeng
作者单位1.Chinese Acad Sci, Shanghai Inst Biol Sci, CAS MPG Partner Inst Computat Biol, Shanghai 200031, Peoples R China
2.Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
3.Chinese Acad Sci, Shanghai Inst Biol Sci, Key Lab Mol Syst Biol, Bioinformat Ctr, Shanghai 200031, Peoples R China
4.Shanghai Jiao Tong Univ, Dept Biomed Engn, Shanghai 200040, Peoples R China
5.E China Normal Univ, Sch Life Sci, Shanghai 200062, Peoples R China
6.E China Normal Univ, Inst Software Engn, Shanghai 200062, Peoples R China
7.Shanghai Univ, Inst Syst Biol, Shanghai 200444, Peoples R China
推荐引用方式
GB/T 7714
Lin, Kao,Qian, Ziliang,Lu, Lin,et al. Predicting mirna's target from primary structure by the nearest neighbor algorithm[J]. Molecular diversity,2010,14(4):719-729.
APA Lin, Kao.,Qian, Ziliang.,Lu, Lin.,Lu, Lingyi.,Lai, Lihui.,...&Cai, Yudong.(2010).Predicting mirna's target from primary structure by the nearest neighbor algorithm.Molecular diversity,14(4),719-729.
MLA Lin, Kao,et al."Predicting mirna's target from primary structure by the nearest neighbor algorithm".Molecular diversity 14.4(2010):719-729.

入库方式: iSwitch采集

来源:中国科学院大学

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。