中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Chern-simons invariant and conformal embedding of a 3-manifold

文献类型:期刊论文

作者Peng, Chiakuei2; Tang, Zizhou1
刊名Acta mathematica sinica-english series
出版日期2010
卷号26期号:1页码:25-28
关键词Chern-simons invariant Berger sphere Conformal embedding
ISSN号1439-8516
DOI10.1007/s10114-010-8559-8
通讯作者Tang, zizhou(zztang@mx.cei.gov.cn)
英文摘要This note studies the chern-simons invariant of a closed oriented riemannian 3-manifold m. the first achievement is to establish the formula cs(e) - cs((e) over tilde) = dega, where e and (e) over tilde are two (global) frames of m, and a : m -> so(3) is the "difference" map. an interesting phenomenon is that the "jumps" of the chern-simons integrals for various frames of many 3-manifolds are at least two, instead of one. the second purpose is to give an explicit representation of cs(e(+)) and cs(e(-)), where e(+) and e(-) are the "left" and "right" quaternionic frames on m(3) induced from an immersion m(3) -> e(4), respectively. consequently we find many metrics on s(3) (berger spheres) so that they can not be conformally embedded in e(4).
WOS研究方向Mathematics
WOS类目Mathematics, Applied ; Mathematics
语种英语
WOS记录号WOS:000273586200002
出版者SPRINGER HEIDELBERG
URI标识http://www.irgrid.ac.cn/handle/1471x/2411703
专题中国科学院大学
通讯作者Tang, Zizhou
作者单位1.Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Beijing 100875, Peoples R China
2.Chinese Acad Sci, Sch Math Sci, Grad Univ, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Peng, Chiakuei,Tang, Zizhou. Chern-simons invariant and conformal embedding of a 3-manifold[J]. Acta mathematica sinica-english series,2010,26(1):25-28.
APA Peng, Chiakuei,&Tang, Zizhou.(2010).Chern-simons invariant and conformal embedding of a 3-manifold.Acta mathematica sinica-english series,26(1),25-28.
MLA Peng, Chiakuei,et al."Chern-simons invariant and conformal embedding of a 3-manifold".Acta mathematica sinica-english series 26.1(2010):25-28.

入库方式: iSwitch采集

来源:中国科学院大学

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。