Chern-simons invariant and conformal embedding of a 3-manifold
文献类型:期刊论文
作者 | Peng, Chiakuei2; Tang, Zizhou1 |
刊名 | Acta mathematica sinica-english series
![]() |
出版日期 | 2010 |
卷号 | 26期号:1页码:25-28 |
关键词 | Chern-simons invariant Berger sphere Conformal embedding |
ISSN号 | 1439-8516 |
DOI | 10.1007/s10114-010-8559-8 |
通讯作者 | Tang, zizhou(zztang@mx.cei.gov.cn) |
英文摘要 | This note studies the chern-simons invariant of a closed oriented riemannian 3-manifold m. the first achievement is to establish the formula cs(e) - cs((e) over tilde) = dega, where e and (e) over tilde are two (global) frames of m, and a : m -> so(3) is the "difference" map. an interesting phenomenon is that the "jumps" of the chern-simons integrals for various frames of many 3-manifolds are at least two, instead of one. the second purpose is to give an explicit representation of cs(e(+)) and cs(e(-)), where e(+) and e(-) are the "left" and "right" quaternionic frames on m(3) induced from an immersion m(3) -> e(4), respectively. consequently we find many metrics on s(3) (berger spheres) so that they can not be conformally embedded in e(4). |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied ; Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000273586200002 |
出版者 | SPRINGER HEIDELBERG |
URI标识 | http://www.irgrid.ac.cn/handle/1471x/2411703 |
专题 | 中国科学院大学 |
通讯作者 | Tang, Zizhou |
作者单位 | 1.Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Beijing 100875, Peoples R China 2.Chinese Acad Sci, Sch Math Sci, Grad Univ, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Peng, Chiakuei,Tang, Zizhou. Chern-simons invariant and conformal embedding of a 3-manifold[J]. Acta mathematica sinica-english series,2010,26(1):25-28. |
APA | Peng, Chiakuei,&Tang, Zizhou.(2010).Chern-simons invariant and conformal embedding of a 3-manifold.Acta mathematica sinica-english series,26(1),25-28. |
MLA | Peng, Chiakuei,et al."Chern-simons invariant and conformal embedding of a 3-manifold".Acta mathematica sinica-english series 26.1(2010):25-28. |
入库方式: iSwitch采集
来源:中国科学院大学
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。