A variable precision rough set approach to the remote sensing land use/cover classification
文献类型:期刊论文
作者 | Pan, Xin1,2,3; Zhang, Shuqing1; Zhang, Huaiqing4; Na, Xiaodong1,2; Li, Xiaofeng1 |
刊名 | Computers & geosciences
![]() |
出版日期 | 2010-12-01 |
卷号 | 36期号:12页码:1466-1473 |
关键词 | Remote sensing classification Knowledge discovery Overlapping data Variable precision rough sets Vprs |
ISSN号 | 0098-3004 |
DOI | 10.1016/j.cageo.2009.11.010 |
通讯作者 | Zhang, shuqing(zhangshuqing@neigae.ac.cn) |
英文摘要 | Nowadays the rough set method is receiving increasing attention in remote sensing classification although one of the major drawbacks of the method is that it is too sensitive to the spectral confusion between-class and spectral variation within-class. in this paper, a novel remote sensing classification approach based on variable precision rough sets (vprs) is proposed by relaxing subset operators through the inclusion error beta. the remote sensing classification algorithm based on vprs includes three steps: (1) spectral and textural information (or other input data) discretization, (2) feature selection, and (3) classification rule extraction. the new method proposed here is tested with landsat-5 tm data. the experiment shows that admitting various inclusion errors beta, can improve classification performance including feature selection and generalization ability. the inclusion of beta also prevents the overfitting to the training data. with the inclusion of beta, higher classification accuracy is obtained. when beta=0 (i.e., the original rough set based classifier), overfitting to the training data occurs, with the overall accuracy=0.6778 and unrecognizable percentage=12%. when beta=0.07, the highest classification performance is reached with overall accuracy and unrecognizable percentage up to 0.8873% and 2.6%, respectively. (c) 2010 elsevier ltd. all rights reserved. |
WOS关键词 | RULES ; DISCOVERY ; ALGORITHM ; MODEL |
WOS研究方向 | Computer Science ; Geology |
WOS类目 | Computer Science, Interdisciplinary Applications ; Geosciences, Multidisciplinary |
语种 | 英语 |
WOS记录号 | WOS:000286304000001 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
URI标识 | http://www.irgrid.ac.cn/handle/1471x/2414536 |
专题 | 中国科学院大学 |
通讯作者 | Zhang, Shuqing |
作者单位 | 1.Chinese Acad Sci, NE Inst Geog & Agr Ecol, Changchun 130012, Peoples R China 2.Chinese Acad Sci, Grad Univ, Beijing 100039, Peoples R China 3.Changchun Inst Technol, Sch Elect & Informat Technol, Changchun 130012, Peoples R China 4.Chinese Acad Forestry, Inst Forest Resources Informat, Beijing 100091, Peoples R China |
推荐引用方式 GB/T 7714 | Pan, Xin,Zhang, Shuqing,Zhang, Huaiqing,et al. A variable precision rough set approach to the remote sensing land use/cover classification[J]. Computers & geosciences,2010,36(12):1466-1473. |
APA | Pan, Xin,Zhang, Shuqing,Zhang, Huaiqing,Na, Xiaodong,&Li, Xiaofeng.(2010).A variable precision rough set approach to the remote sensing land use/cover classification.Computers & geosciences,36(12),1466-1473. |
MLA | Pan, Xin,et al."A variable precision rough set approach to the remote sensing land use/cover classification".Computers & geosciences 36.12(2010):1466-1473. |
入库方式: iSwitch采集
来源:中国科学院大学
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。