中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Minimal two-spheres in g(2,4)

文献类型:期刊论文

作者Jiao, Xiaoxiang; Peng, Jiagui
刊名Frontiers of mathematics in china
出版日期2010-06-01
卷号5期号:2页码:297-310
关键词Harmonic map Conformal minimal immersion Gauss curvature Kahler angle Complex grassmann manifold
ISSN号1673-3452
DOI10.1007/s11464-010-0009-5
通讯作者Jiao, xiaoxiang(xxj@gucas.ac.cn)
英文摘要In this paper, we mainly study the geometry of conformal minimal immersions of two-spheres in a complex grassmann manifold g(2,4). at first, we give a precise description of any non-+/- holomorphic harmonic 2-sphere in g(2,4) with the linearly full holomorphic maps psi(0): s (2) -> a",p(3) (called its directrix curve) and then, it is proved that such a conformal minimal immersion i center dot: s (2) -> g(2, 4) with constant curvature has constant kaahler angle. furthermore, i center dot is either v (1) ((3)) + v (3) ((3)) , which is totally geodesic, with constant gauss curvature 2/5 and constant kaahler angle given by t = 3/2 or v (3) ((3)) + v (2) ((3)) , which is totally real, but it is not totally geodesic, with constant gauss curvature 2/3, where v (0) ((3)) , v (1) ((3)) , v (2) ((3)) , v (3) ((3)) : s (2) -> a",p(3) is the veronese sequence.
WOS关键词COMPLEX GRASSMANN MANIFOLDS ; PSEUDO-HOLOMORPHIC CURVES ; HARMONIC MAPS ; CONSTANT CURVATURE ; SURFACES ; SPACE ; S2
WOS研究方向Mathematics
WOS类目Mathematics
语种英语
WOS记录号WOS:000276169000005
出版者HIGHER EDUCATION PRESS
URI标识http://www.irgrid.ac.cn/handle/1471x/2414751
专题中国科学院大学
通讯作者Jiao, Xiaoxiang
作者单位Chinese Acad Sci, Grad Univ, Dept Math, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Jiao, Xiaoxiang,Peng, Jiagui. Minimal two-spheres in g(2,4)[J]. Frontiers of mathematics in china,2010,5(2):297-310.
APA Jiao, Xiaoxiang,&Peng, Jiagui.(2010).Minimal two-spheres in g(2,4).Frontiers of mathematics in china,5(2),297-310.
MLA Jiao, Xiaoxiang,et al."Minimal two-spheres in g(2,4)".Frontiers of mathematics in china 5.2(2010):297-310.

入库方式: iSwitch采集

来源:中国科学院大学

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。