中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Photosynthetic acclimation to long-term high temperature and soil drought stress in two spruce species (Picea crassifolia and P-wilsonii) used for afforestation

文献类型:期刊论文

作者Zhang, Xiaowei ; Chen, Litong ; Wang, Jingru ; Wang, Minghao ; Yang, Shuli ; Zhao, Changming
刊名JOURNAL OF FORESTRY RESEARCH
出版日期2018-03-01
英文摘要Picea crassifolia and P. wilsonii, commonly used for afforestation in northern China, are increasingly likely to be subjected to high temperatures and soil drought stress as a result of global warming. However, little is known about the effects of these stresses on foliar photosynthesis in the two species. To investigate how photosynthetic characteristics and sensitivity respond to prolonged high temperatures and soil drought, foliar gas exchange and other closely related parameters were recorded from four-year-old seedlings of both species. Seedlings were grown under two temperature treatments (25/15 and 35/25 A degrees C) and four soil water regimes [80, 60, 40 and 20% of maximum field capacity (FC)] for 4 months. Although all treatments significantly reduced photosynthetic rates (P (n)) of both species, P. crassifolia exhibited greater photosynthetic acclimation than P. wilsonii. Differences in photosynthetic acclimation were mainly related to variations in stomatal conductance (Cond) and the maximum quantum yield of PSII (F (v)/F (m)) between treatments. Indeed, higher Cond and F (v)/F (m) in all treatments were shown for P. crassifolia than for P. wilsonii. Moreover, photosynthesis in P. crassifolia exhibited inherently lower temperature sensitivities (broader span for the temperature response curves; lower b) and higher thermostability (invariable b between treatments). Further, severe drought stress (20% FC) limited the survival of P. wilsonii. Our results indicate that P. wilsonii is more susceptible to high temperatures and soil drought stress. Planting P. crassifolia would be more expected to survive these conditions and hence be of greater benefit to forest stability if predicted increases in drought and temperature in northern China occur.
源URL[http://ir.nwipb.ac.cn/handle/363003/13325]  
专题西北高原生物研究所_中国科学院西北高原生物研究所
推荐引用方式
GB/T 7714
Zhang, Xiaowei,Chen, Litong,Wang, Jingru,et al. Photosynthetic acclimation to long-term high temperature and soil drought stress in two spruce species (Picea crassifolia and P-wilsonii) used for afforestation[J]. JOURNAL OF FORESTRY RESEARCH,2018.
APA Zhang, Xiaowei,Chen, Litong,Wang, Jingru,Wang, Minghao,Yang, Shuli,&Zhao, Changming.(2018).Photosynthetic acclimation to long-term high temperature and soil drought stress in two spruce species (Picea crassifolia and P-wilsonii) used for afforestation.JOURNAL OF FORESTRY RESEARCH.
MLA Zhang, Xiaowei,et al."Photosynthetic acclimation to long-term high temperature and soil drought stress in two spruce species (Picea crassifolia and P-wilsonii) used for afforestation".JOURNAL OF FORESTRY RESEARCH (2018).

入库方式: OAI收割

来源:西北高原生物研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。