中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Methanol Decomposition on Co(0001): Influence of the Cobalt Oxidation State on Reactivity

文献类型:期刊论文

作者Wu, Jiawei3; Chen, Jun2,3; Guo, Qing1,3; Yang, Wenshao4; Dai, Dongxu3; Chen, Maodu2; Yang, Xueming3
刊名JOURNAL OF PHYSICAL CHEMISTRY C
出版日期2019-04-11
卷号123期号:14页码:9139-9145
ISSN号1932-7447
DOI10.1021/acs.jpcc.9b00727
通讯作者Guo, Qing(guoqing@dicp.ac.cn) ; Yang, Xueming(xmyang@dicp.ac.cn)
英文摘要Reaction of methanol (CH3OH) on metal surfaces has received lots of concerns because of its potential application in hydrogen (H-2) production and fuel cells. In this work, we have studied the decomposition of CH3OH on Co(0001) and its oxide surfaces using temperature-programmed desorption to understand the effect of surface oxidation on the production of H-2 via CH3OH decomposition. On a clean Co(0001) surface, CH3OH molecules decompose into CO and H atoms easily in the temperature range of 280-350 K, resulting in a maximum yield of 0.27 ML for H-2 production. With O atoms on the Co(0001) surface, methoxy groups can be easily formed. As the surface temperature rises to about 370 K, methoxy groups begin to decompose followed by an immediate desorption of H-2 and CO at the same temperature, resulting in a maximum yield of H-2 which increases to 0.42 ML on the similar to 0.25 ML O atom-covered Co(0001) surface. However, on the CoO- and Co3O4-like surfaces, CH3OH is selectively decomposed to CH2O and CO2, respectively, and the H-2 production is decreased significantly, while the activities of CoO- and Co3O4-like surfaces are much lower than that of the O atom-covered Co(0001) surface. Therefore, avoiding the formation of oxide surfaces is helpful for H-2 production from CH3OH decomposition.
WOS关键词SURFACE ; OXYGEN ; ADSORPTION ; WATER ; CHEMISORPTION ; CATALYSTS ; MECHANISM ; RU(0001) ; CU(110) ; LEED
资助项目National Natural Science Foundation of China[21673235] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDB17000000] ; Zhejiang Provincial Natural Science Foundation of China[LQ18B030003] ; Youth Innovation Promotion Association CAS
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science
语种英语
WOS记录号WOS:000464768600073
出版者AMER CHEMICAL SOC
资助机构National Natural Science Foundation of China ; National Natural Science Foundation of China ; Strategic Priority Research Program of Chinese Academy of Sciences ; Strategic Priority Research Program of Chinese Academy of Sciences ; Zhejiang Provincial Natural Science Foundation of China ; Zhejiang Provincial Natural Science Foundation of China ; Youth Innovation Promotion Association CAS ; Youth Innovation Promotion Association CAS ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; Strategic Priority Research Program of Chinese Academy of Sciences ; Strategic Priority Research Program of Chinese Academy of Sciences ; Zhejiang Provincial Natural Science Foundation of China ; Zhejiang Provincial Natural Science Foundation of China ; Youth Innovation Promotion Association CAS ; Youth Innovation Promotion Association CAS ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; Strategic Priority Research Program of Chinese Academy of Sciences ; Strategic Priority Research Program of Chinese Academy of Sciences ; Zhejiang Provincial Natural Science Foundation of China ; Zhejiang Provincial Natural Science Foundation of China ; Youth Innovation Promotion Association CAS ; Youth Innovation Promotion Association CAS ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; Strategic Priority Research Program of Chinese Academy of Sciences ; Strategic Priority Research Program of Chinese Academy of Sciences ; Zhejiang Provincial Natural Science Foundation of China ; Zhejiang Provincial Natural Science Foundation of China ; Youth Innovation Promotion Association CAS ; Youth Innovation Promotion Association CAS
源URL[http://cas-ir.dicp.ac.cn/handle/321008/165544]  
专题大连化学物理研究所_中国科学院大连化学物理研究所
通讯作者Guo, Qing; Yang, Xueming
作者单位1.Southern Univ Sci & Technol, Dept Chem, Shenzhen 518055, Guangdong, Peoples R China
2.Dalian Univ Technol, Key Lab Mat Modificat Laser Electron & Ion Beams, Minist Educ, Sch Phys, Dalian 116023, Liaoning, Peoples R China
3.Dalian Inst Chem Phys, State Key Lab Mol React Dynam, 457 Zhongshan Rd, Dalian 116023, Liaoning, Peoples R China
4.Zhejiang Normal Univ, Hangzhou Inst Adv Studies, 1108 Gengwen Rd, Hangzhou 311231, Zhejiang, Peoples R China
推荐引用方式
GB/T 7714
Wu, Jiawei,Chen, Jun,Guo, Qing,et al. Methanol Decomposition on Co(0001): Influence of the Cobalt Oxidation State on Reactivity[J]. JOURNAL OF PHYSICAL CHEMISTRY C,2019,123(14):9139-9145.
APA Wu, Jiawei.,Chen, Jun.,Guo, Qing.,Yang, Wenshao.,Dai, Dongxu.,...&Yang, Xueming.(2019).Methanol Decomposition on Co(0001): Influence of the Cobalt Oxidation State on Reactivity.JOURNAL OF PHYSICAL CHEMISTRY C,123(14),9139-9145.
MLA Wu, Jiawei,et al."Methanol Decomposition on Co(0001): Influence of the Cobalt Oxidation State on Reactivity".JOURNAL OF PHYSICAL CHEMISTRY C 123.14(2019):9139-9145.

入库方式: OAI收割

来源:大连化学物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。