中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Construction of reactive potential energy surfaces with Gaussian process regression: active data selection

文献类型:期刊论文

作者Zhang, Dong H.3; Guan, Yafu1,2,3; Yang, Shuo1,2,3
刊名MOLECULAR PHYSICS
出版日期2018
卷号116期号:7-8页码:823-834
关键词Potential Energy Surface Gaussian Process Regression Active Learning
ISSN号0026-8976
DOI10.1080/00268976.2017.1407460
文献子类Article
英文摘要Gaussian process regression (GPR) is an efficient non-parametric method for constructing multi-dimensional potential energy surfaces (PESs) for polyatomic molecules. Since not only the posterior mean but also the posterior variance can be easily calculated, GPR provides a well-established model for active learning, through which PESs can be constructed more efficiently and accurately. We propose a strategy of active data selection for the construction of PESs with emphasis on low energy regions. Through three-dimensional (3D) example of H-3, the validity of this strategy is verified. The PESs for two prototypically reactive systems, namely, H + H2O H-2 + OH reaction and H + CH4 H-2 + CH3 reaction are reconstructed. Only 920 and 4000 points are assembled to reconstruct these two PESs respectively. The accuracy of the GP PESs is not only tested by energy errors but also validated by quantum scattering calculations.
WOS关键词NEURAL-NETWORK APPROACH ; QUANTUM DYNAMICS ; DISSOCIATIVE CHEMISORPTION ; INTERPOLATION ; SIMULATIONS ; SCATTERING ; CU(111) ; H2O
WOS研究方向Chemistry ; Physics
语种英语
WOS记录号WOS:000430050600005
出版者TAYLOR & FRANCIS LTD
源URL[http://cas-ir.dicp.ac.cn/handle/321008/169062]  
专题大连化学物理研究所_中国科学院大连化学物理研究所
通讯作者Zhang, Dong H.
作者单位1.Chinese Acad Sci, Dalian Inst Chem Phys, Ctr Theoret Computat Chem, Dalian 116023, Peoples R China
2.Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Mol React Dynam, Dalian 116023, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Dong H.,Guan, Yafu,Yang, Shuo. Construction of reactive potential energy surfaces with Gaussian process regression: active data selection[J]. MOLECULAR PHYSICS,2018,116(7-8):823-834.
APA Zhang, Dong H.,Guan, Yafu,&Yang, Shuo.(2018).Construction of reactive potential energy surfaces with Gaussian process regression: active data selection.MOLECULAR PHYSICS,116(7-8),823-834.
MLA Zhang, Dong H.,et al."Construction of reactive potential energy surfaces with Gaussian process regression: active data selection".MOLECULAR PHYSICS 116.7-8(2018):823-834.

入库方式: OAI收割

来源:大连化学物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。