中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Communication: Fitting potential energy surfaces with fundamental invariant neural network

文献类型:期刊论文

作者Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H.1
刊名JOURNAL OF CHEMICAL PHYSICS
出版日期2016-08-21
卷号145期号:7
ISSN号0021-9606
DOI10.1063/1.4961454
文献子类Article
英文摘要A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH3 and CH4 were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations. Published by AIP Publishing.
WOS关键词FINITE-GROUPS
WOS研究方向Chemistry ; Physics
语种英语
WOS记录号WOS:000381680700001
出版者AMER INST PHYSICS
源URL[http://cas-ir.dicp.ac.cn/handle/321008/170298]  
专题大连化学物理研究所_中国科学院大连化学物理研究所
通讯作者Zhang, Dong H.
作者单位1.Chinese Acad Sci, State Key Lab Mol React Dynam, Dalian Inst Chem Phys, Dalian 116023, Peoples R China
2.Chinese Acad Sci, Ctr Theoret Computat Chem, Dalian Inst Chem Phys, Dalian 116023, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Shao, Kejie,Chen, Jun,Zhao, Zhiqiang,et al. Communication: Fitting potential energy surfaces with fundamental invariant neural network[J]. JOURNAL OF CHEMICAL PHYSICS,2016,145(7).
APA Shao, Kejie,Chen, Jun,Zhao, Zhiqiang,&Zhang, Dong H..(2016).Communication: Fitting potential energy surfaces with fundamental invariant neural network.JOURNAL OF CHEMICAL PHYSICS,145(7).
MLA Shao, Kejie,et al."Communication: Fitting potential energy surfaces with fundamental invariant neural network".JOURNAL OF CHEMICAL PHYSICS 145.7(2016).

入库方式: OAI收割

来源:大连化学物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。