Smooth orientation interpolation using parametric quintic-polynomial-based quaternion spline curve
文献类型:期刊论文
作者 | Tan, Jieqing1; Xing, Yan1; Fan, Wen1; Hong, Peilin2 |
刊名 | JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
![]() |
出版日期 | 2018-02-01 |
卷号 | 329期号:无页码:256-267 |
关键词 | Quaternion G(2)-continuity Interpolation spline Tension parameter |
ISSN号 | 0377-0427 |
DOI | 10.1016/j.cam.2017.07.007 |
英文摘要 | In this paper, a G(2) continuous quintic-polynomial-based unit quaternion interpolation spline curve with tension parameters is presented to interpolate a given sequence of solid orientations. The curve in unit quaternion space S-3 is an extension of the quintic polynomial interpolation spline curve in Euclidean space. It preserves the interpolatory property and G(2) continuity. Meanwhile, the unit quaternion interpolation spline curve possesses the local shape adjustability due to the presence of tension parameters. The change of one tension parameter will only affect the adjacent two pieces of curves. Compared with the traditional B-spline unit quaternion interpolation curve and v-spline unit quaternion interpolation curve, the proposed curve can automatically interpolate the given data points, without solving the nonlinear system of equations over quaternions to obtain the control points, which greatly improves the computational efficiency. Simulation results demonstrate the effectiveness of the proposed scheme. (C) 2017 Elsevier B.V. All rights reserved. |
WOS关键词 | SOLID ORIENTATIONS |
资助项目 | National Natural Science Foundation of China[61472466] ; National Natural Science Foundation of China[11601115] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000413613900021 |
出版者 | ELSEVIER SCIENCE BV |
源URL | [http://ir.hfcas.ac.cn:8080/handle/334002/35938] ![]() |
专题 | 合肥物质科学研究院_中科院合肥智能机械研究所 |
通讯作者 | Xing, Yan |
作者单位 | 1.Hefei Univ Technol, Sch Math, Hefei 230009, Anhui, Peoples R China 2.Chinese Acad Sci, Inst Intelligent Machines, Hefei 230009, Anhui, Peoples R China |
推荐引用方式 GB/T 7714 | Tan, Jieqing,Xing, Yan,Fan, Wen,et al. Smooth orientation interpolation using parametric quintic-polynomial-based quaternion spline curve[J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,2018,329(无):256-267. |
APA | Tan, Jieqing,Xing, Yan,Fan, Wen,&Hong, Peilin.(2018).Smooth orientation interpolation using parametric quintic-polynomial-based quaternion spline curve.JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,329(无),256-267. |
MLA | Tan, Jieqing,et al."Smooth orientation interpolation using parametric quintic-polynomial-based quaternion spline curve".JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 329.无(2018):256-267. |
入库方式: OAI收割
来源:合肥物质科学研究院
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。