中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Robust PCANet for hyperspectral image change detection

文献类型:会议论文

作者Yuan, Zhenghang1; Wang, Qi1,2; Li, Xuelong3,4
出版日期2018-10-31
会议日期2018-07-22
会议地点Valencia, Spain
卷号2018-July
DOI10.1109/IGARSS.2018.8518196
页码4931-4934
英文摘要

Deep learning is an effective tool for handling high-dimensional data and modeling nonlinearity, which can tackle the hyperspectral data well. Usually deep learning methods need a large number of training samples. However, there is no labeled data for training in change detection (CD). Considering these, this paper develops an unsupervised Robust PCA network (RPCANet) for hyperspectral image CD task. The main contributions of this work are twofold: 1) An unsupervised convolutional neural networks named RPCANet is proposed to handle the hyperspectral image CD; 2) An effective CD framework using the RPCANet and change vector analysis (CVA) is designed to achieve better CD performance with more powerful features. Experimental results on real hyperspectral data sets demonstrate the effectiveness of the proposed method. © 2018 IEEE

产权排序3
会议录2018 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Proceedings
会议录出版者Institute of Electrical and Electronics Engineers Inc.
语种英语
ISBN号9781538671504
源URL[http://ir.opt.ac.cn/handle/181661/31387]  
专题西安光学精密机械研究所_光学影像学习与分析中心
作者单位1.School of Computer Science, Center for OPTical IMagery Analysis and Learning, Northwestern Polytechnical University, Xi'an, Shaanxi Province; 710072, China;
2.Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an, Shaanxi Province; 710072, China;
3.Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xian, Shaanxi Province; 710119, China;
4.University of Chinese Academy of Sciences, Beijing; 100049, China
推荐引用方式
GB/T 7714
Yuan, Zhenghang,Wang, Qi,Li, Xuelong. Robust PCANet for hyperspectral image change detection[C]. 见:. Valencia, Spain. 2018-07-22.

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。