Robust PCANet for hyperspectral image change detection
文献类型:会议论文
作者 | Yuan, Zhenghang1; Wang, Qi1,2![]() ![]() |
出版日期 | 2018-10-31 |
会议日期 | 2018-07-22 |
会议地点 | Valencia, Spain |
卷号 | 2018-July |
DOI | 10.1109/IGARSS.2018.8518196 |
页码 | 4931-4934 |
英文摘要 | Deep learning is an effective tool for handling high-dimensional data and modeling nonlinearity, which can tackle the hyperspectral data well. Usually deep learning methods need a large number of training samples. However, there is no labeled data for training in change detection (CD). Considering these, this paper develops an unsupervised Robust PCA network (RPCANet) for hyperspectral image CD task. The main contributions of this work are twofold: 1) An unsupervised convolutional neural networks named RPCANet is proposed to handle the hyperspectral image CD; 2) An effective CD framework using the RPCANet and change vector analysis (CVA) is designed to achieve better CD performance with more powerful features. Experimental results on real hyperspectral data sets demonstrate the effectiveness of the proposed method. © 2018 IEEE |
产权排序 | 3 |
会议录 | 2018 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Proceedings
![]() |
会议录出版者 | Institute of Electrical and Electronics Engineers Inc. |
语种 | 英语 |
ISBN号 | 9781538671504 |
源URL | [http://ir.opt.ac.cn/handle/181661/31387] ![]() |
专题 | 西安光学精密机械研究所_光学影像学习与分析中心 |
作者单位 | 1.School of Computer Science, Center for OPTical IMagery Analysis and Learning, Northwestern Polytechnical University, Xi'an, Shaanxi Province; 710072, China; 2.Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an, Shaanxi Province; 710072, China; 3.Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xian, Shaanxi Province; 710119, China; 4.University of Chinese Academy of Sciences, Beijing; 100049, China |
推荐引用方式 GB/T 7714 | Yuan, Zhenghang,Wang, Qi,Li, Xuelong. Robust PCANet for hyperspectral image change detection[C]. 见:. Valencia, Spain. 2018-07-22. |
入库方式: OAI收割
来源:西安光学精密机械研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。