Spatiotemporal interest point detector exploiting appearance and motion-variation information
文献类型:期刊论文
作者 | Li, Yanshan1; Li, Qingteng1; Huang, Qinghua2,3,4; Xia, Rongjie1; Li, Xuelong4![]() |
刊名 | JOURNAL OF ELECTRONIC IMAGING
![]() |
出版日期 | 2019-05 |
卷号 | 28期号:3 |
关键词 | spatiotemporal interest point detector spatiotemporal interest point geometric algebra video |
ISSN号 | 1017-9909;1560-229X |
DOI | 10.1117/1.JEI.28.3.033002 |
产权排序 | 4 |
英文摘要 | As a local invariant feature of videos, the spatiotemporal interest point (STIP) has been widely used in computer vision and pattern recognition. However, existing STIP detectors are generally extended from detection algorithms constructed for local invariant features of two-dimensional images, which does not explicitly exploit the motion information inherent in the temporal domain of videos, thus weakening the performance of existing STIP detectors in a video context. To remedy this, we aim to develop an STIP detector that uniformly captures appearance and motion information for video, thus yielding substantial performance improvement. Specifically, under the framework of geometric algebra, we first develop a spatiotemporal unified model of appearance and motion-variation information (UMAMV), and then a UMAMV-based scale space of the spatiotemporal domain is proposed to synthetically analyze appearance information and motion information in a video. Based on this model, we propose an STIP feature of UMAMV-SIFT that embraces both appearance and motion variation information of the videos. Three datasets with different sizes are utilized to evaluate the proposed model and the STIP detector. We present experimental results to show that the UMAMV-SIFT achieves state-of-the-art performance and is particularly effective when dataset is small. (C) 2019 SPIE and IS&T |
语种 | 英语 |
WOS记录号 | WOS:000473732200002 |
出版者 | IS&T & SPIE |
源URL | [http://ir.opt.ac.cn/handle/181661/31587] ![]() |
专题 | 西安光学精密机械研究所_光学影像学习与分析中心 |
通讯作者 | Li, Yanshan |
作者单位 | 1.Shenzhen Univ, ATR Natl Key Lab Def Technol, Shenzhen, Peoples R China 2.Northwestern Polytech Univ, Sch Mech Engn, Ctr Opt Imagery Anal & Learning, Xian, Shaanxi, Peoples R China 3.South China Univ Technol, Sch Elect & Informat Engn, Guangzhou, Guangdong, Peoples R China 4.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian, Shaanxi, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Yanshan,Li, Qingteng,Huang, Qinghua,et al. Spatiotemporal interest point detector exploiting appearance and motion-variation information[J]. JOURNAL OF ELECTRONIC IMAGING,2019,28(3). |
APA | Li, Yanshan,Li, Qingteng,Huang, Qinghua,Xia, Rongjie,&Li, Xuelong.(2019).Spatiotemporal interest point detector exploiting appearance and motion-variation information.JOURNAL OF ELECTRONIC IMAGING,28(3). |
MLA | Li, Yanshan,et al."Spatiotemporal interest point detector exploiting appearance and motion-variation information".JOURNAL OF ELECTRONIC IMAGING 28.3(2019). |
入库方式: OAI收割
来源:西安光学精密机械研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。