中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Spatiotemporal interest point detector exploiting appearance and motion-variation information

文献类型:期刊论文

作者Li, Yanshan1; Li, Qingteng1; Huang, Qinghua2,3,4; Xia, Rongjie1; Li, Xuelong4
刊名JOURNAL OF ELECTRONIC IMAGING
出版日期2019-05
卷号28期号:3
关键词spatiotemporal interest point detector spatiotemporal interest point geometric algebra video
ISSN号1017-9909;1560-229X
DOI10.1117/1.JEI.28.3.033002
产权排序4
英文摘要

As a local invariant feature of videos, the spatiotemporal interest point (STIP) has been widely used in computer vision and pattern recognition. However, existing STIP detectors are generally extended from detection algorithms constructed for local invariant features of two-dimensional images, which does not explicitly exploit the motion information inherent in the temporal domain of videos, thus weakening the performance of existing STIP detectors in a video context. To remedy this, we aim to develop an STIP detector that uniformly captures appearance and motion information for video, thus yielding substantial performance improvement. Specifically, under the framework of geometric algebra, we first develop a spatiotemporal unified model of appearance and motion-variation information (UMAMV), and then a UMAMV-based scale space of the spatiotemporal domain is proposed to synthetically analyze appearance information and motion information in a video. Based on this model, we propose an STIP feature of UMAMV-SIFT that embraces both appearance and motion variation information of the videos. Three datasets with different sizes are utilized to evaluate the proposed model and the STIP detector. We present experimental results to show that the UMAMV-SIFT achieves state-of-the-art performance and is particularly effective when dataset is small. (C) 2019 SPIE and IS&T

语种英语
WOS记录号WOS:000473732200002
出版者IS&T & SPIE
源URL[http://ir.opt.ac.cn/handle/181661/31587]  
专题西安光学精密机械研究所_光学影像学习与分析中心
通讯作者Li, Yanshan
作者单位1.Shenzhen Univ, ATR Natl Key Lab Def Technol, Shenzhen, Peoples R China
2.Northwestern Polytech Univ, Sch Mech Engn, Ctr Opt Imagery Anal & Learning, Xian, Shaanxi, Peoples R China
3.South China Univ Technol, Sch Elect & Informat Engn, Guangzhou, Guangdong, Peoples R China
4.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Li, Yanshan,Li, Qingteng,Huang, Qinghua,et al. Spatiotemporal interest point detector exploiting appearance and motion-variation information[J]. JOURNAL OF ELECTRONIC IMAGING,2019,28(3).
APA Li, Yanshan,Li, Qingteng,Huang, Qinghua,Xia, Rongjie,&Li, Xuelong.(2019).Spatiotemporal interest point detector exploiting appearance and motion-variation information.JOURNAL OF ELECTRONIC IMAGING,28(3).
MLA Li, Yanshan,et al."Spatiotemporal interest point detector exploiting appearance and motion-variation information".JOURNAL OF ELECTRONIC IMAGING 28.3(2019).

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。