Unmixing grain-size distributions in lake sediments: a new method of endmember modeling using hierarchical clustering
文献类型:期刊论文
作者 | Zhang, XN (Zhang, Xiaonan)1; Zhou, AF (Zhou, Aifeng)1; Wang, X (Wang, Xin)1; Song, M (Song, Mu)2; Zhao, YT (Zhao, Yongtao)1; Xie, HC (Xie, Haichao)1; Russell, JM (Russell, James M.)3; Chen, FH (Chen, Fahu)1,4 |
刊名 | QUATERNARY RESEARCH
![]() |
出版日期 | 2018 |
卷号 | 89期号:1 特刊: SI页码:365-373 |
关键词 | Unconsolidated Sediments Statistical-analysis Tibetan Plateau Wulungu Lake Central-asia China Algorithms Package Environments Number |
ISSN号 | 0033-5894 |
DOI | 10.1017/qua.2017.78 |
英文摘要 | The grain-size distribution (GSD) of sediments provides information on sediment provenance, transport processes, and the sedimentary environment. Although a wide range of statistical parameters have been applied to summarize GSDs, most are directed at only parts of the distribution, which limits the amount of environmental information that can be retrieved. Endmember modeling provides a flexible method for unmixing GSDs; however, the calculation of the exact number of endmembers and geologically meaningful endmember spectra remain unresolved using existing modeling methods. Here we present the methodology hierarchical clustering endmember modeling analysis (CEMMA) for unmixing the GSDs of sediments. Within the CEMMA framework, the number of endmembers can be inferred from agglomeration coefficients, and the grain-size spectra of endmembers are defined on the basis of the average distance between the samples in the clusters. After objectively defining grain-size endmembers, we use a least squares algorithm to calculate the fractions of each GSD endmember that contributes to individual samples. To test the CEMMA method, we use a grain-size data set from a sediment core from Wulungu Lake in the Junggar Basin in China, and find that application of the CEMMA methodology yields geologically and mathematically meaningful results. We conclude that CEMMA is a rapid and flexible approach for analyzing the GSDs of sediments. |
学科主题 | 生态学 |
WOS研究方向 | Physical Geography ; Geology |
语种 | 英语 |
WOS记录号 | WOS:000425965700024 |
出版者 | CAMBRIDGE UNIV PRESS |
源URL | [http://ir.itpcas.ac.cn/handle/131C11/8777] ![]() |
专题 | 青藏高原研究所_图书馆 |
通讯作者 | Zhang, XN (Zhang, Xiaonan) |
作者单位 | 1.Lanzhou Univ, Coll Earth & Environm Sci, Key Lab Western Chinas Environm Syst, Minist Educ, Lanzhou 730000, Gansu, Peoples R China; 2.Univ Hong Kong, Dept Earth Sci, Hong Kong 999077, Hong Kong, Peoples R China; 3.[Russell, James M.] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA; 4.Chinese Acad Sci, Inst Tibetan Plateau Res, Beijing 100101, Peoples R China. |
推荐引用方式 GB/T 7714 | Zhang, XN ,Zhou, AF ,Wang, X ,et al. Unmixing grain-size distributions in lake sediments: a new method of endmember modeling using hierarchical clustering[J]. QUATERNARY RESEARCH,2018,89(1 特刊: SI):365-373. |
APA | Zhang, XN .,Zhou, AF .,Wang, X .,Song, M .,Zhao, YT .,...&Chen, FH .(2018).Unmixing grain-size distributions in lake sediments: a new method of endmember modeling using hierarchical clustering.QUATERNARY RESEARCH,89(1 特刊: SI),365-373. |
MLA | Zhang, XN ,et al."Unmixing grain-size distributions in lake sediments: a new method of endmember modeling using hierarchical clustering".QUATERNARY RESEARCH 89.1 特刊: SI(2018):365-373. |
入库方式: OAI收割
来源:青藏高原研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。