中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Exploring the value of machine learning for weighted multi-model combination of an ensemble of global hydrological models

文献类型:期刊论文

作者Zaherpour, Jamal1; Mount, Nick1; Gosling, Simon N.1; Dankers, Rutger2; Eisner, Stephanie3,11; Gerten, Dieter4,5; Liu, Xingcai6; Masaki, Yoshimitsu7; Schmied, Hannes Mueller8,9; Tang, Qiuhong6
刊名ENVIRONMENTAL MODELLING & SOFTWARE
出版日期2019-04-01
卷号114页码:112-128
关键词Machine learning Model weighting Gene expression programming Global hydrological models Optimisation
ISSN号1364-8152
DOI10.1016/j.envsoft.2019.01.003
通讯作者Zaherpour, Jamal(zaherpour@gmail.com)
英文摘要This study presents a novel application of machine learning to deliver optimised, multi-model combinations (MMCs) of Global Hydrological Model (GHM) simulations. We exemplify the approach using runoff simulations from five GHMs across 40 large global catchments. The benchmarked, median performance gain of the MMC solutions is 45% compared to the best performing GHM and exceeds 100% when compared to the ensemble mean (EM). The performance gain offered by MMC suggests that future multi-model applications consider reporting MMCs, alongside the EM and intermodal range, to provide end-users of GHM ensembles with a better contextualised estimate of runoff. Importantly, the study highlights the difficulty of interpreting complex, non-linear MMC solutions in physical terms. This indicates that a pragmatic approach to future MMC studies based on machine learning methods is required, in which the allowable solution complexity is carefully constrained.
WOS关键词CLIMATE-CHANGE IMPACTS ; WATER-QUALITY MODEL ; INTEGRATED MODEL ; DATA FUSION ; RUNOFF ; SCALE ; STREAMFLOW ; UNCERTAINTY ; SIMULATIONS ; PREDICTIONS
资助项目German Ministry of Education and Research[01LS1201A] ; Islamic Development Bank, Saudi Arabia ; 2018 University of Nottingham Faculty of Social Sciences Research Outputs Award ; Environment Research and Technology Development Fund (S-10) of the Ministry of the Environment, Japan
WOS研究方向Computer Science ; Engineering ; Environmental Sciences & Ecology
语种英语
WOS记录号WOS:000458135500009
出版者ELSEVIER SCI LTD
资助机构German Ministry of Education and Research ; Islamic Development Bank, Saudi Arabia ; 2018 University of Nottingham Faculty of Social Sciences Research Outputs Award ; Environment Research and Technology Development Fund (S-10) of the Ministry of the Environment, Japan
源URL[http://ir.igsnrr.ac.cn/handle/311030/49863]  
专题中国科学院地理科学与资源研究所
通讯作者Zaherpour, Jamal
作者单位1.Univ Nottingham, Sch Geog, Sir Clive Granger Bldg, Nottingham NG7 2RD, England
2.Met Off, FitzRoy Rd, Exeter EX1 3PB, Devon, England
3.Univ Kassel, Ctr Environm Syst Res, Wilhelmshoher Allee 47, D-34109 Kassel, Germany
4.Potsdam Inst Climate Impact Res, D-14473 Potsdam, Germany
5.Humboldt Univ, Dept Geog, D-10099 Berlin, Germany
6.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing, Peoples R China
7.Hirosaki Univ, Bunkyocho 3, Hirosaki, Aomori 0368561, Japan
8.Goethe Univ Frankfurt, Inst Phys Geog, Altenoferallee 1, D-60438 Frankfurt, Germany
9.Senckenberg Biodivers & Climate Res Ctr SBiK F, Senckenberganlage 25, D-60325 Frankfurt, Germany
10.IIASA, Schlosspl 1, A-2361 Laxenburg, Austria
推荐引用方式
GB/T 7714
Zaherpour, Jamal,Mount, Nick,Gosling, Simon N.,et al. Exploring the value of machine learning for weighted multi-model combination of an ensemble of global hydrological models[J]. ENVIRONMENTAL MODELLING & SOFTWARE,2019,114:112-128.
APA Zaherpour, Jamal.,Mount, Nick.,Gosling, Simon N..,Dankers, Rutger.,Eisner, Stephanie.,...&Wada, Yoshihide.(2019).Exploring the value of machine learning for weighted multi-model combination of an ensemble of global hydrological models.ENVIRONMENTAL MODELLING & SOFTWARE,114,112-128.
MLA Zaherpour, Jamal,et al."Exploring the value of machine learning for weighted multi-model combination of an ensemble of global hydrological models".ENVIRONMENTAL MODELLING & SOFTWARE 114(2019):112-128.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。