中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Identifying spatial interaction patterns of vehicle movements on urban road networks by topic modelling

文献类型:期刊论文

作者Liu, Kang1,2; Gao, Song3; Lu, Feng2,4,5,6
刊名COMPUTERS ENVIRONMENT AND URBAN SYSTEMS
出版日期2019-03-01
卷号74页码:50-61
关键词Spatial interaction Vehicle movement Stroke Road network Topic model
ISSN号0198-9715
DOI10.1016/j.compenvurbsys.2018.12.001
通讯作者Lu, Feng(luf@lreis.ac.cn)
英文摘要The development of mobile positioning technologies makes massive individual trajectory data easily accessible, which facilitates the revisit of spatial interaction issue in recent years. Researchers have proposed many methods to investigate the spatial interactions derived from human movements, such as the gravity model and radiation model. However, these studies have mainly focused on the interactions among areal units at an aggregated level, neglecting that in most cases, human movements are carried by vehicles and constrained by the underlying road network, which causes the interactions among roads. To fill this gap, we propose a novel approach to identify spatial interaction patterns of vehicle movements on urban road network. As the topic model originating from the domain of natural language processing has powerful advantages in extracting semantic relations of words from corpus, we utilize it to extract interaction relations of urban roads from massive vehicle trajectories. First, "strokes" (i.e., natural streets) are chosen as geographical units to represent the vehicle moving paths. Then, an analogy between geographical elements (i.e., stroke, moving path) and textual elements (i.e., word, document) is established, and a topic model is applied to the moving paths to identify the spatial interaction patterns on road network. From a mass of trajectory data collected by GNSS-equipped taxis in Beijing, the "topic patterns", which can be viewed as clusters of spatially interacted strokes, are identified, visualized and verified. It is argued that our proposed approach is effective in identifying spatial interaction patterns, which provides a new perspective for spatial interaction modelling and enriches the current spatial interaction studies.
WOS关键词STREET NETWORKS ; PATH SELECTION ; MOBILITY
资助项目National Natural Science Foundation of China[41631177] ; National Natural Science Foundation of China[41601421] ; National Natural Science Foundation of China[41701167] ; National Key Research and Development Program[2016YFB0502104]
WOS研究方向Computer Science ; Engineering ; Environmental Sciences & Ecology ; Geography ; Operations Research & Management Science ; Public Administration
语种英语
WOS记录号WOS:000458227000005
出版者ELSEVIER SCI LTD
资助机构National Natural Science Foundation of China ; National Key Research and Development Program
源URL[http://ir.igsnrr.ac.cn/handle/311030/49949]  
专题中国科学院地理科学与资源研究所
通讯作者Lu, Feng
作者单位1.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
2.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing, Peoples R China
3.Univ Wisconsin Madison, Dept Geog, Madison, WI USA
4.Fujian Collaborat Innovat Ctr Big Data Applicat G, Fuzhou, Fujian, Peoples R China
5.Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing, Jiangsu, Peoples R China
6.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Liu, Kang,Gao, Song,Lu, Feng. Identifying spatial interaction patterns of vehicle movements on urban road networks by topic modelling[J]. COMPUTERS ENVIRONMENT AND URBAN SYSTEMS,2019,74:50-61.
APA Liu, Kang,Gao, Song,&Lu, Feng.(2019).Identifying spatial interaction patterns of vehicle movements on urban road networks by topic modelling.COMPUTERS ENVIRONMENT AND URBAN SYSTEMS,74,50-61.
MLA Liu, Kang,et al."Identifying spatial interaction patterns of vehicle movements on urban road networks by topic modelling".COMPUTERS ENVIRONMENT AND URBAN SYSTEMS 74(2019):50-61.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。