中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A spatial heterogeneity-based rough set extension for spatial data

文献类型:期刊论文

作者Bai, Hexiang1; Li, Deyu1,2; Ge, Yong3; Wang, Jinfeng3
刊名INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE
出版日期2019-02-01
卷号33期号:2页码:240-268
关键词Rough set model spatial information table spatial heterogeneity spatial autocorrelation feature selection
ISSN号1365-8816
DOI10.1080/13658816.2018.1524148
通讯作者Bai, Hexiang(baihx@sxu.edu.cn)
英文摘要When classical rough set (CRS) theory is used to analyze spatial data, there is an underlying assumption that objects in the universe are completely randomly distributed over space. However, this assumption conflicts with the actual situation of spatial data. Generally, spatial heterogeneity and spatial autocorrelation are two important characteristics of spatial data. These two characteristics are important information sources for improving the modeling accuracy of spatial data. This paper extends CRS theory by introducing spatial heterogeneity and spatial autocorrelation. This new extension adds spatial adjacency information into the information table. Many fundamental concepts in CRS theory, such as the indiscernibility relation, equivalent classes, and lower and upper approximations, are improved by adding spatial adjacency information into these concepts. Based on these fundamental concepts, a new reduct and an improved rule matching method are proposed. The new reduct incorporates spatial heterogeneity in selecting the feature subset which can preserve the local discriminant power of all features, and the new rule matching method uses spatial autocorrelation to improve the classification ability of rough set-based classifiers. Experimental results show that the proposed extension significantly increased classification or segmentation accuracy, and the spatial reduct required much less time than classical reduct.
WOS关键词ATTRIBUTE REDUCTION ; LOCAL INDICATORS ; RULE ACQUISITION ; CLASSIFICATION ; SEGMENTATION ; ASSOCIATION ; FUZZY ; EXTRACTION ; SELECTION ; DEFECTS
WOS研究方向Computer Science ; Geography ; Physical Geography ; Information Science & Library Science
语种英语
WOS记录号WOS:000450550600002
出版者TAYLOR & FRANCIS LTD
源URL[http://ir.igsnrr.ac.cn/handle/311030/51490]  
专题中国科学院地理科学与资源研究所
通讯作者Bai, Hexiang
作者单位1.Shanxi Univ, Sch Comp & Informat Technol, Taiyuan, Shanxi, Peoples R China
2.Shanxi Univ, Key Lab Computat Intelligence & Chinese Informat, Minist Educ, Taiyuan, Shanxi, Peoples R China
3.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Bai, Hexiang,Li, Deyu,Ge, Yong,et al. A spatial heterogeneity-based rough set extension for spatial data[J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE,2019,33(2):240-268.
APA Bai, Hexiang,Li, Deyu,Ge, Yong,&Wang, Jinfeng.(2019).A spatial heterogeneity-based rough set extension for spatial data.INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE,33(2),240-268.
MLA Bai, Hexiang,et al."A spatial heterogeneity-based rough set extension for spatial data".INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 33.2(2019):240-268.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。