Effects of sky conditions on net ecosystem productivity of a subtropical coniferous plantation vary from half-hourly to daily timescales
文献类型:期刊论文
作者 | Han, Jiayin1,2; Zhang, Leiming1,2![]() ![]() ![]() ![]() ![]() |
刊名 | SCIENCE OF THE TOTAL ENVIRONMENT
![]() |
出版日期 | 2019-02-15 |
卷号 | 651页码:3002-3014 |
关键词 | Diffuse radiation Eddy covariance NEE Temporal variation Path analysis |
ISSN号 | 0048-9697 |
DOI | 10.1016/j.scitotenv2018.10.190 |
通讯作者 | Zhang, Leiming(zhanglm@igsnrr.ac.cn) ; Li, Shenggong(lisg@igsnrr.ac.cn) |
英文摘要 | The dynamic changes of solar radiation have received wide attention in global change studies, but there are controversies about the influence of diffuse radiation on ecosystem carbon sequestration. Using eddy covariance measurements from 2010 to 2012, the effects of sky conditions extracted from adjacent sunny, cloudy, and overcast days on net ecosystem productivity (NEP) of a subtropical coniferous plantation were examined from half-hourly to daily scales. Half-hourly NEP responded to the changing radiation more efficiently on overcast days compared to sunny days, but such response did not differ obviously between cloudy and sunny days. Compared with sunny conditions, apparent quantum yield (alpha) under overcast (cloudy) conditions changed 282.4% (41.7%) in spring, 140.3% (-42%) in summer, 218.5% (38.9%) in autumn, and 146.2% (0.5%) in winter, respectively: annually. a under overcast (cloudy) conditions increased by 225.9% (19.8%) in 2010, 189.8% (6.0%) in 2011. and 159.5% (21.4%) in 2012, respectively. Moreover, the potential NEP at the light intensity of 150 and 750 W m(-2) was improved due to increased diffuse fraction. However, both daytime NEP and daily NEP were significantly lower under overcast skies than under sunny and cloudy skies. Compared with sunny days, daily NEP on overcast days decreased by 127.7% in spring. 126.4% in summer, 121.8% in autumn, and 100.6% in winter, respectively: annually, daily NEP decreased by 122.5% in 2010. 141.7% in 2011, and 109.9% in 2012, respectively. Diurnal patterns of daily NEP were quite similar between sunny and cloudy days. Both path analysis and multiple regression showed that solar radiation, especially diffuse radiation, was responsible for the variations of NEP under different skies across seasons, but this effect may be weakened by seasonal droughts. This study implies that the effects of sky conditions on NEP are timescale dependent and should be paid more attention in ecosystem carbon cycle study. (C) 2018 Elsevier B.V. All tights reserved. |
WOS关键词 | CARBON-DIOXIDE EXCHANGE ; EDDY COVARIANCE TECHNIQUE ; FOREST ECOSYSTEMS ; DIFFUSE-RADIATION ; ENVIRONMENTAL CONTROLS ; SOIL RESPIRATION ; USE EFFICIENCY ; IMPACT ; WATER ; TEMPERATURE |
资助项目 | National Key Research and Development Program of China[2017YFC0503801] ; National Key Research and Development Program of China[2016YFD0600202] |
WOS研究方向 | Environmental Sciences & Ecology |
语种 | 英语 |
WOS记录号 | WOS:000450551600125 |
出版者 | ELSEVIER SCIENCE BV |
资助机构 | National Key Research and Development Program of China |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/51518] ![]() |
专题 | 中国科学院地理科学与资源研究所 |
通讯作者 | Zhang, Leiming; Li, Shenggong |
作者单位 | 1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Beijing 100101, Peoples R China 2.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Han, Jiayin,Zhang, Leiming,Li, Shenggong,et al. Effects of sky conditions on net ecosystem productivity of a subtropical coniferous plantation vary from half-hourly to daily timescales[J]. SCIENCE OF THE TOTAL ENVIRONMENT,2019,651:3002-3014. |
APA | Han, Jiayin,Zhang, Leiming,Li, Shenggong,Wen, Xuefa,Li, Qingkang,&Wang, Huimin.(2019).Effects of sky conditions on net ecosystem productivity of a subtropical coniferous plantation vary from half-hourly to daily timescales.SCIENCE OF THE TOTAL ENVIRONMENT,651,3002-3014. |
MLA | Han, Jiayin,et al."Effects of sky conditions on net ecosystem productivity of a subtropical coniferous plantation vary from half-hourly to daily timescales".SCIENCE OF THE TOTAL ENVIRONMENT 651(2019):3002-3014. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。