中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Extraction of Urban Waterlogging Depth from Video Images Using Transfer Learning

文献类型:期刊论文

作者Jiang, Jingchao1,2; Liu, Junzhi3,4; Qin, Cheng-Zhi4,5; Wang, Dongliang6
刊名WATER
出版日期2018-10-01
卷号10期号:10页码:11
关键词urban waterlogging depth video image transfer learning lasso regression
ISSN号2073-4441
DOI10.3390/w10101485
通讯作者Liu, Junzhi(liujunzhi@njnu.edu.cn)
英文摘要Urban flood control requires real-time and spatially detailed information regarding the waterlogging depth over large areas, but such information cannot be effectively obtained by the existing methods. Video supervision equipment, which is readily available in most cities, can record urban waterlogging processes in video form. These video data could be a valuable data source for waterlogging depth extraction. The present paper is aimed at demonstrating a new approach to extract urban waterlogging depths from video images based on transfer learning and lasso regression. First, a transfer learning model is used to extract feature vectors from a video image set of urban waterlogging. Second, a lasso regression model is trained with these feature vectors and employed to calculate the waterlogging depth. Two case studies in China were used to evaluate the proposed method, and the experimental results illustrate the effectiveness of the method. This method can be applied to video images from widespread cameras in cities, so that a powerful urban waterlogging monitoring network can be formed.
WOS关键词CONVOLUTIONAL NEURAL-NETWORKS ; LASSO
资助项目National Natural Science Foundation of China[41601423] ; National Natural Science Foundation of China[41601413] ; Natural Science Foundation of Jiangsu Province of China[BK20150975]
WOS研究方向Water Resources
语种英语
WOS记录号WOS:000451208400200
出版者MDPI
资助机构National Natural Science Foundation of China ; Natural Science Foundation of Jiangsu Province of China
源URL[http://ir.igsnrr.ac.cn/handle/311030/51556]  
专题中国科学院地理科学与资源研究所
通讯作者Liu, Junzhi
作者单位1.Hangzhou Dianzi Univ, Smart City Res Ctr, Hangzhou 310012, Zhejiang, Peoples R China
2.Smart City Collaborat Innovat Ctr Zhejiang Prov, Hangzhou 310012, Zhejiang, Peoples R China
3.Nanjing Normal Univ, Minist Educ, Key Lab Virtual Geog Environm, Nanjing 210023, Jiangsu, Peoples R China
4.Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Jiangsu, Peoples R China
5.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
6.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Land Surface Pattern & Simulat, Beijing 100101, Peoples R China
推荐引用方式
GB/T 7714
Jiang, Jingchao,Liu, Junzhi,Qin, Cheng-Zhi,et al. Extraction of Urban Waterlogging Depth from Video Images Using Transfer Learning[J]. WATER,2018,10(10):11.
APA Jiang, Jingchao,Liu, Junzhi,Qin, Cheng-Zhi,&Wang, Dongliang.(2018).Extraction of Urban Waterlogging Depth from Video Images Using Transfer Learning.WATER,10(10),11.
MLA Jiang, Jingchao,et al."Extraction of Urban Waterlogging Depth from Video Images Using Transfer Learning".WATER 10.10(2018):11.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。