中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Using multi-model ensembles of CMIP5 global climate models to reproduce observed monthly rainfall and temperature with machine learning methods in Australia

文献类型:期刊论文

作者Wang, Bin1; Zheng, Lihong2; Liu, De Li1,3,4; Ji, Fei5; Clark, Anthony6; Yu, Qiang7,8,9
刊名INTERNATIONAL JOURNAL OF CLIMATOLOGY
出版日期2018-11-15
卷号38期号:13页码:4891-4902
关键词GCMs machine learning multi-model ensemble random forest support vector machine
ISSN号0899-8418
DOI10.1002/joc.5705
通讯作者Wang, Bin(bin.a.wang@dpi.nsw.gov.au)
英文摘要Global climate models (GCMs) are useful tools for assessing climate change impacts on temperature and rainfall. Although climate data from various GCMs have been increasingly used in climate change impact studies, GCMs configurations and module characteristics vary from one to another. Therefore, it is crucial to assess different GCMs to confirm the extent to which they can reproduce the observed temperature and rainfall. Rather than assessing the interdependence of each GCM, the purpose of this study is to compare the capacity of four different multi-model ensemble (MME) methods (random forest [RF], support vector machine [SVM], Bayesian model averaging [BMA] and the arithmetic ensemble mean [EM]) in reproducing observed monthly rainfall and temperature. Of these four methods, the RF and SVM demonstrated a significant improvement over EM and BMA in terms of performance criteria. The relative importance of each GCM based on the RF ensemble in reproducing rainfall and temperature could also be ranked. We compared the GCMs importance and Taylor skill score and found that their correlation was 0.95 for temperature and 0.54 for rainfall. Our results also demonstrated that the number of GCMs ensemble simulations could be reduced from 33 to 25 in RF model while maintaining predictive error less than 2%. Having such a representative subset of simulations could reduce computational costs for climate impact modelling and maintain the quality of ensemble at the same time. We conclude that machine learning MME could be efficient and useful with improved accuracy in reproducing historical climate variables.
WOS关键词ORGANIC-CARBON STOCKS ; EASTERN AUSTRALIA ; RANDOM FORESTS ; CHANGE IMPACTS ; PROJECTIONS ; INDEPENDENCE ; PREDICTION ; SCENARIOS ; ALGORITHM ; NETWORKS
WOS研究方向Meteorology & Atmospheric Sciences
语种英语
WOS记录号WOS:000450222100015
出版者WILEY
源URL[http://ir.igsnrr.ac.cn/handle/311030/52486]  
专题中国科学院地理科学与资源研究所
通讯作者Wang, Bin
作者单位1.NSW Dept Primary Ind, Wagga Wagga Agr Inst, Wagga Wagga, NSW 2650, Australia
2.Charles Sturt Univ, Sch Comp & Math, Wagga Wagga, NSW, Australia
3.Univ New South Wales, Climate Change Res Ctr, Sydney, NSW, Australia
4.Univ New South Wales, ARC Ctr Excellence Climate Extremes, Sydney, NSW, Australia
5.NSW Off Environm & Heritage, Dept Planning & Environm, Sydney, NSW, Australia
6.NSW Dept Primary Ind, Orange Agr Inst, Orange, NSW, Australia
7.Univ Technol Sydney, Sch Life Sci, Fac Sci, Sydney, NSW, Australia
8.Univ Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing, Peoples R China
9.Northwest A&F Univ, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Wang, Bin,Zheng, Lihong,Liu, De Li,et al. Using multi-model ensembles of CMIP5 global climate models to reproduce observed monthly rainfall and temperature with machine learning methods in Australia[J]. INTERNATIONAL JOURNAL OF CLIMATOLOGY,2018,38(13):4891-4902.
APA Wang, Bin,Zheng, Lihong,Liu, De Li,Ji, Fei,Clark, Anthony,&Yu, Qiang.(2018).Using multi-model ensembles of CMIP5 global climate models to reproduce observed monthly rainfall and temperature with machine learning methods in Australia.INTERNATIONAL JOURNAL OF CLIMATOLOGY,38(13),4891-4902.
MLA Wang, Bin,et al."Using multi-model ensembles of CMIP5 global climate models to reproduce observed monthly rainfall and temperature with machine learning methods in Australia".INTERNATIONAL JOURNAL OF CLIMATOLOGY 38.13(2018):4891-4902.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。