中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
硫离子响应释放材料的制备及其应用研究

文献类型:学位论文

作者张沪伟
答辩日期2019-05
文献子类硕士
授予单位中国科学院大学
授予地点中国科学院海洋研究所
导师王鹏
关键词海洋微生物腐蚀,硫离子响应释放,多孔纳米材料,杀菌剂
学位名称理学硕士
学位专业海洋腐蚀与防护
英文摘要

摘要

微生物腐蚀是造成海洋环境工程设施加速破坏的重要因素,而硫酸盐还原菌(SRB)是其中一种典型的腐蚀微生物。使用杀菌剂的传统化学防治法会破坏生态环境,增强细菌的耐药性。本研究针对这一问题,通过物理载药和化学载药等方法构建了三种不同类型的硫离子响应释放材料,检测了载药体系在不同硫离子浓度条件下的释放情况,揭示了载药材料的释放机制。主要结果如下:

(1)利用Cu-BTA能够形成络合物膜层的原理,将其作为封堵层,修饰到通过真空负载方式填充了杀菌剂分子(甲硝唑)的埃洛石纳米管端口处。研究了不同浓度铜离子溶液对载药体系的封堵效果以及载药体系在不同硫离子浓度条件下的释放情况。结果发现最佳的铜离子封孔浓度为10.24 g/L,载药体系能够实现对硫离子的响应释放,响应释放对应的最低硫离子浓度为3.2 mg/L。

(2)沿用了Cu-BTA能够形成络合物膜层的原理,用整体封堵的方式替换端口封堵的方式,用掺杂有Cu-BTA络合物的明胶溶液对负载杀菌剂(甲硝唑)的纳米管进行包覆处理。结果发现,能够对载药埃洛石纳米管实现有效封堵的纯明胶溶液的质量浓度为10 g/L,用明胶和Cu-BTA络合物对载药埃洛石纳米管进行混合包覆处理的最佳掺杂比例为1:1,测试结果还证明了经过包覆处理的载药埃洛石纳米管在硫离子条件下和酸性条件下能够实现响应释放,即具有双重响应性,对硫离子实现响应释放的最低浓度为32 mg/L。

(3)利用硫离子对金属离子参与形成配位键的破坏作用,改变之前物理载药的方式,以SBA-15分子筛作为载体材料,经过氨基修饰后,利用配位键的作用,分步嫁接不同金属离子和不同的杀菌剂,构建了“氨基-金属离子-杀菌剂”的载药体系。结果发现,结构中杀菌剂的释放情况有参与形成配位键的金属离子与硫离子结合形成硫化物的沉淀系数有关,即沉淀越容易形成,原先的配位键越容易被破坏,杀菌剂越容易释放出来,以铜离子为金属离子构建的载药体系的硫离子响应释放浓度最低为3.2 mg/L,万古霉素的释放量也最大,达到200 mg/L,最符合载药体系的构建要求,除此之外,实验也验证了杀菌剂分子结构中含有能与金属离子配位的官能团数量越多,杀菌剂分子与金属离子结合得越牢固。

语种中文
源URL[http://ir.qdio.ac.cn/handle/337002/156867]  
专题海洋研究所_海洋腐蚀与防护研究发展中心
推荐引用方式
GB/T 7714
张沪伟. 硫离子响应释放材料的制备及其应用研究[D]. 中国科学院海洋研究所. 中国科学院大学. 2019.

入库方式: OAI收割

来源:海洋研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。