Malicious code detection based on CNNs and multi-objective algorithm
文献类型:期刊论文
作者 | Cui, Zhihua1; Du, Lei1; Wang, Penghong1; Cai, Xingjuan1; Zhang, Wensheng2![]() |
刊名 | JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING
![]() |
出版日期 | 2019-07-01 |
卷号 | 129页码:50-58 |
关键词 | Malicious code Deep learning CNN Imbalance data NSGA-II |
ISSN号 | 0743-7315 |
DOI | 10.1016/j.jpdc.2019.03.010 |
通讯作者 | Cai, Xingjuan(xingjuancai@163.com) |
英文摘要 | An increasing amount of malicious code causes harm on the internet by threatening user privacy as one of the primary sources of network security vulnerabilities. The detection of malicious code is becoming increasingly crucial, and current methods of detection require much improvement. This paper proposes a method to advance the detection of malicious code using convolutional neural networks (CNNs) and intelligence algorithm. The CNNs are used to identify and classify grayscale images converted from executable files of malicious code. Non-dominated Sorting Genetic Algorithm II (NSGA-II) is then employed to deal with the data imbalance of malware families. A series of experiments are designed for malware image data from Vision Research Lab. The experimental results demonstrate that the proposed method is effective, maintaining higher accuracy and less loss. (C) 2019 Elsevier Inc. All rights reserved. |
WOS关键词 | GENETIC ALGORITHM ; NEURAL-NETWORKS ; CLASSIFICATION ; OPTIMIZATION |
资助项目 | National Natural Science Foundation of China[61806138] ; National Natural Science Foundation of China[U1636220] ; National Natural Science Foundation of China[61663028] ; Natural Science Foundation of Shanxi Province, China[201801D121127] ; Scientific and Technological innovation Team of Shanxi Province, China[201805D131007] ; PhD Research Startup Foundation of Taiyuan University of Science and Technology, China[20182002] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000468255800004 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
资助机构 | National Natural Science Foundation of China ; Natural Science Foundation of Shanxi Province, China ; Scientific and Technological innovation Team of Shanxi Province, China ; PhD Research Startup Foundation of Taiyuan University of Science and Technology, China |
源URL | [http://ir.ia.ac.cn/handle/173211/24197] ![]() |
专题 | 精密感知与控制研究中心_人工智能与机器学习 |
通讯作者 | Cai, Xingjuan |
作者单位 | 1.TaiYuan Univ Sci & Technol, Complex Syst & Computat Intelligence Lab, Taiyuan 030024, Shanxi, Peoples R China 2.Chinese Acad Sci, Inst Automat, State Key Lab Intelligent Control & Management Co, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Cui, Zhihua,Du, Lei,Wang, Penghong,et al. Malicious code detection based on CNNs and multi-objective algorithm[J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING,2019,129:50-58. |
APA | Cui, Zhihua,Du, Lei,Wang, Penghong,Cai, Xingjuan,&Zhang, Wensheng.(2019).Malicious code detection based on CNNs and multi-objective algorithm.JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING,129,50-58. |
MLA | Cui, Zhihua,et al."Malicious code detection based on CNNs and multi-objective algorithm".JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 129(2019):50-58. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。