Stochastic Conjugate Gradient Algorithm With Variance Reduction
文献类型:期刊论文
作者 | Jin, Xiao-Bo1; Zhang, Xu-Yao2![]() |
刊名 | IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
![]() |
出版日期 | 2019-05-01 |
卷号 | 30期号:5页码:1360-1369 |
关键词 | Computational efficiency covariance reduction empirical risk minimization (ERM) linear convergence stochastic conjugate gradient (CG) |
ISSN号 | 2162-237X |
DOI | 10.1109/TNNLS.2018.2868835 |
通讯作者 | Geng, Guang-Gang(gengguanggang@cnnic.cn) |
英文摘要 | Conjugate gradient (CG) methods are a class of important methods for solving linear equations and nonlinear optimization problems. In this paper, we propose a new stochastic CG algorithm with variance reduction(1) and we prove its linear convergence with the Fletcher and Reeves method for strongly convex and smooth functions. We experimentally demonstrate that the CG with variance reduction algorithm converges faster than its counterparts for four learning models, which may be convex, nonconvex or nonsmooth. In addition, its area under the curve performance on six large-scale data sets is comparable to that of the LIBLINEAR solver for the L2-regularized L2-loss but with a significant improvement in computational efficiency. |
WOS关键词 | GLOBAL CONVERGENCE |
资助项目 | Fundamental Research Funds for the Henan Provincial Colleges and Universities in Henan University of Technology[2016RCJH06] ; National Natural Science Foundation of China[61103138] ; National Natural Science Foundation of China[61602154] ; National Natural Science Foundation of China[61375039] ; National Natural Science Foundation of China[61473236] ; National Natural Science Foundation of China[U1804326] ; National Key Research & Development Program[2016YFD0400104-5] ; National Basic Research Program of China[2012CB316301] |
WOS研究方向 | Computer Science ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:000466192100007 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | Fundamental Research Funds for the Henan Provincial Colleges and Universities in Henan University of Technology ; National Natural Science Foundation of China ; National Key Research & Development Program ; National Basic Research Program of China |
源URL | [http://ir.ia.ac.cn/handle/173211/24223] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_模式分析与学习团队 |
通讯作者 | Geng, Guang-Gang |
作者单位 | 1.Henan Univ Technol, Dept Informat Sci & Engn, Zhengzhou 450001, Henan, Peoples R China 2.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China 3.Xian Jiaotong Liverpool Univ, Dept Elect & Elect Engn, Suzhou 215123, Peoples R China 4.Chinese Acad Sci, Comp Network Informat Ctr, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Jin, Xiao-Bo,Zhang, Xu-Yao,Huang, Kaizhu,et al. Stochastic Conjugate Gradient Algorithm With Variance Reduction[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2019,30(5):1360-1369. |
APA | Jin, Xiao-Bo,Zhang, Xu-Yao,Huang, Kaizhu,&Geng, Guang-Gang.(2019).Stochastic Conjugate Gradient Algorithm With Variance Reduction.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,30(5),1360-1369. |
MLA | Jin, Xiao-Bo,et al."Stochastic Conjugate Gradient Algorithm With Variance Reduction".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 30.5(2019):1360-1369. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。