Cross-modality interactive attention network for multispectral pedestrian detection
文献类型:期刊论文
作者 | Zhang, Lu1,4![]() ![]() ![]() ![]() ![]() |
刊名 | INFORMATION FUSION
![]() |
出版日期 | 2019-10-01 |
卷号 | 50页码:20-29 |
关键词 | Pedestrian detection Modality fusion Cross-modality attention Deep neural networks |
ISSN号 | 1566-2535 |
DOI | 10.1016/j.inffus.2018.09.015 |
通讯作者 | Liu, Zhiyong(zhiyong.liu@ia.ac.cn) |
英文摘要 | Multispectral pedestrian detection is an emerging solution with great promise in many around-the-clock applications, such as automotive driving and security surveillance. To exploit the complementary nature and remedy contradictory appearance between modalities, in this paper, we propose a novel cross-modality interactive attention network that takes full advantage of the interactive properties of multispectral input sources. Specifically, we first utilize the color (RGB) and thermal streams to build up two detached feature hierarchy for each modality, then by taking the global features, correlations between two modalities are encoded in the attention module. Next, the channel responses of halfway feature maps are recalibrated adaptively for subsequent fusion operation. Our architecture is constructed in the multi-scale format to better deal with different scales of pedestrians, and the whole network is trained in an end-to-end way. The proposed method is extensively evaluated on the challenging KAIST multispectral pedestrian dataset and achieves state-of-the-art performance with high efficiency. |
WOS关键词 | FUSION ; IMAGES |
资助项目 | National Key Research and Development Plan of China[2017YFB1300202] ; National Key Research and Development Plan of China[2016YFC0300801] ; National Natural Science Foundation of China[U1613213] ; National Natural Science Foundation of China[61627808] ; National Natural Science Foundation of China[61503383] ; National Natural Science Foundation of China[61210009] ; National Natural Science Foundation of China[91648205] ; National Natural Science Foundation of China[61702516] ; National Natural Science Foundation of China[61473236] ; National Natural Science Foundation of China[61876155] ; Ministry of Science and Technology of the People's Republic of China[2015BAK35B00] ; Ministry of Science and Technology of the People's Republic of China[2015BAK35B01] ; Chinese Academy of Sciences (Science Frontier Program)[XDBS01050100] ; Natural Science Foundation of the Jiangsu Higher Education Institutions of China[17KJD520010] ; Guangdong Science and Technology Department[2016B090910001] ; Suzhou Science and Technology Program[SYG201712] ; Suzhou Science and Technology Program[SZS201613] ; Key Program Special Fund in XJTLU[KSF-A-01] ; Key Program Special Fund in XJTLU[KSF-P-02] ; UK Engineering and Physical Sciences Research Council (EPSRC)[EP/M026981/1] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000466056900003 |
出版者 | ELSEVIER SCIENCE BV |
资助机构 | National Key Research and Development Plan of China ; National Natural Science Foundation of China ; Ministry of Science and Technology of the People's Republic of China ; Chinese Academy of Sciences (Science Frontier Program) ; Natural Science Foundation of the Jiangsu Higher Education Institutions of China ; Guangdong Science and Technology Department ; Suzhou Science and Technology Program ; Key Program Special Fund in XJTLU ; UK Engineering and Physical Sciences Research Council (EPSRC) |
源URL | [http://ir.ia.ac.cn/handle/173211/24394] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_机器人应用与理论组 |
通讯作者 | Liu, Zhiyong |
作者单位 | 1.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China 2.Chinese Acad Sci, Inst Automat, Ctr Biometr & Secur Res, Beijing, Peoples R China 3.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China 4.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China 5.Xian Jiaotong Liverpool Univ, Dept EEE, SIP, Renai Rd 111, Suzhou 215123, Jiangsu, Peoples R China 6.Edinburgh Napier Univ, Sch Comp, Merchiston Campus, Edinburgh EH10 5DT, Midlothian, Scotland 7.Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Lu,Liu, Zhiyong,Zhang, Shifeng,et al. Cross-modality interactive attention network for multispectral pedestrian detection[J]. INFORMATION FUSION,2019,50:20-29. |
APA | Zhang, Lu.,Liu, Zhiyong.,Zhang, Shifeng.,Yang, Xu.,Qiao, Hong.,...&Hussain, Amir.(2019).Cross-modality interactive attention network for multispectral pedestrian detection.INFORMATION FUSION,50,20-29. |
MLA | Zhang, Lu,et al."Cross-modality interactive attention network for multispectral pedestrian detection".INFORMATION FUSION 50(2019):20-29. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。