HiWalk: Learning node embeddings from heterogeneous networks
文献类型:期刊论文
作者 | Bai, Jie1,2![]() ![]() ![]() |
刊名 | INFORMATION SYSTEMS
![]() |
出版日期 | 2019-03-01 |
卷号 | 81页码:82-91 |
关键词 | Network analysis Representation learning Behavioral analysis Random walk Heterogeneous network |
ISSN号 | 0306-4379 |
DOI | 10.1016/j.is.2018.11.008 |
通讯作者 | Bai, Jie(baijie2013@ia.ac.cn) ; Li, Linjing(linjing.li@ia.ac.cn) |
英文摘要 | Heterogeneous networks, such as bibliographical networks and online business networks, are ubiquitous in everyday life. Nevertheless, analyzing them for high-level semantic understanding still poses a great challenge for modern information systems. In this paper, we propose HiWalk to learn distributed vector representations of the nodes in heterogeneous networks. HiWalk is inspired by the state-of-the-art representation learning algorithms employed in the context of both homogeneous networks and heterogeneous networks, based on word embedding learning models. Different from existing methods in the literature, the purpose of HiWalk is to learn vector representations of the targeted set of nodes by leveraging the other nodes as "background knowledge", which maximizes the structural correlations of contiguous nodes. HiWalk decomposes the adjacent probabilities of the nodes and adopts a hierarchical random walk strategy, which makes it more effective, efficient and concentrated when applied to practical large-scale heterogeneous networks. HiWalk can be widely applied in heterogeneous networks environments to analyze targeted types of nodes. We further validate the effectiveness of the proposed HiWalk through multiple tasks conducted on two real-world datasets. (C) 2018 Elsevier Ltd. All rights reserved. |
WOS关键词 | FRAMEWORK |
资助项目 | National Key R&D Program of China[2016QY02D0305] ; National Natural Science Foundation of China[71621002] ; National Natural Science Foundation of China[71602184] ; National Natural Science Foundation of China[71202169] ; National Natural Science Foundation of China[61671450] ; National Natural Science Foundation of China[U1435221] ; Key Research Program of the Chinese Academy of Sciences[ZDRW-XH-2017-3] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000459839400005 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
资助机构 | National Key R&D Program of China ; National Natural Science Foundation of China ; Key Research Program of the Chinese Academy of Sciences |
源URL | [http://ir.ia.ac.cn/handle/173211/25000] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_互联网大数据与安全信息学研究中心 |
通讯作者 | Bai, Jie; Li, Linjing |
作者单位 | 1.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China 3.Univ Arizona, Dept Management Informat Syst, Tucson, AZ 85721 USA |
推荐引用方式 GB/T 7714 | Bai, Jie,Li, Linjing,Zeng, Daniel. HiWalk: Learning node embeddings from heterogeneous networks[J]. INFORMATION SYSTEMS,2019,81:82-91. |
APA | Bai, Jie,Li, Linjing,&Zeng, Daniel.(2019).HiWalk: Learning node embeddings from heterogeneous networks.INFORMATION SYSTEMS,81,82-91. |
MLA | Bai, Jie,et al."HiWalk: Learning node embeddings from heterogeneous networks".INFORMATION SYSTEMS 81(2019):82-91. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。