中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Learning view invariant gait features with Two-Stream GAN

文献类型:期刊论文

作者Wang, Yanyun1,2; Song, Chunfeng2,3; Huang, Yan2,3,4; Wang, Zhenyu1; Wang, Liang2,3,4
刊名NEUROCOMPUTING
出版日期2019-04-28
卷号339页码:245-254
关键词Gait recognition Cross-veiw Two-Stream GAN
ISSN号0925-2312
DOI10.1016/j.neucom.2019.02.025
通讯作者Wang, Zhenyu(zywang@ncepu.edu.cn)
英文摘要Gait recognition is an important yet challenging problem in computer vision. The changing view of gait is one of the most challenging factors, which could greatly affect the accuracy of cross-view gait recognition. In this paper, we propose a Two-Stream Generative Adversarial Network (TS-GAN) for cross-view gait recognition. For any view of gait representations, GAN can restore it to the corresponding standard view, to learn view invariant gait features. To achieve this goal, TS-GAN has two streams : (1) the global-stream can learn global contexts, and (2) the part-stream can learn local details. We combine the two streams to learn final identities. Moreover, we add a pixel-wise loss along with the generators of GAN to restore the gait details in pixel-level. We evaluate the proposed method on two widely used gait databases: CASIA-B and OU-ISIR. Experiment results show that our approach outperforms the compared state-of-the-art approaches. (C) 2019 Elsevier B.V. All rights reserved.
WOS关键词RECOGNITION ; REPRESENTATION ; IMAGE
资助项目National Key Research and Development Program of China[2016YFB10010 0 0] ; National National Science Foundation of China[61573139] ; National National Science Foundation of China[61525306] ; National National Science Foundation of China[61633021] ; National National Science Foundation of China[61721004] ; National National Science Foundation of China[61420106015] ; Capital Science and Technology Leading Talent Training Project[Z181100006318030] ; Fundamental Research Funds for the Central Universities[2018ZD05] ; Beijing Science and Technology Project[Z181100008918010]
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000461166500024
出版者ELSEVIER SCIENCE BV
资助机构National Key Research and Development Program of China ; National National Science Foundation of China ; Capital Science and Technology Leading Talent Training Project ; Fundamental Research Funds for the Central Universities ; Beijing Science and Technology Project
源URL[http://ir.ia.ac.cn/handle/173211/25004]  
专题自动化研究所_智能感知与计算研究中心
通讯作者Wang, Zhenyu
作者单位1.North China Elect Power Univ, Sch Control & Comp Engn, Beijing 102206, Peoples R China
2.Chinese Acad Sci CASIA, CRIPAC, NLPR, Beijing 100190, Peoples R China
3.UCAS, Beijing 100190, Peoples R China
4.CEBSIT, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wang, Yanyun,Song, Chunfeng,Huang, Yan,et al. Learning view invariant gait features with Two-Stream GAN[J]. NEUROCOMPUTING,2019,339:245-254.
APA Wang, Yanyun,Song, Chunfeng,Huang, Yan,Wang, Zhenyu,&Wang, Liang.(2019).Learning view invariant gait features with Two-Stream GAN.NEUROCOMPUTING,339,245-254.
MLA Wang, Yanyun,et al."Learning view invariant gait features with Two-Stream GAN".NEUROCOMPUTING 339(2019):245-254.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。