Fast and Error-Bounded Space-Variant Bilateral Filtering
文献类型:期刊论文
作者 | Yuan, Meng-Ke1,2![]() ![]() ![]() |
刊名 | JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
![]() |
出版日期 | 2019-05-01 |
卷号 | 34期号:3页码:550-568 |
关键词 | error-bounded acceleration edge-aware smoothing space-variant bilateral filtering |
ISSN号 | 1000-9000 |
DOI | 10.1007/s11390-019-1926-8 |
通讯作者 | Zhang, Xiao-Peng(xiaopeng.zhang@ia.ac.cn) |
英文摘要 | The traditional space-invariant isotropic kernel utilized by a bilateral filter (BF) frequently leads to blurry edges and gradient reversal artifacts due to the existence of a large amount of outliers in the local averaging window. However, the efficient and accurate estimation of space-variant kernels which adapt to image structures, and the fast realization of the corresponding space-variant bilateral filtering are challenging problems. To address these problems, we present a space-variant BF (SVBF), and its linear time and error-bounded acceleration method. First, we accurately estimate spacevariant anisotropic kernels that vary with image structures in linear time through structure tensor and minimum spanning tree. Second, we perform SVBF in linear time using two error-bounded approximation methods, namely, low-rank tensor approximation via higher-order singular value decomposition and exponential sum approximation. Therefore, the proposed SVBF can efficiently achieve good edge-preserving results. We validate the advantages of the proposed filter in applications including: image denoising, image enhancement, and image focus editing. Experimental results demonstrate that our fast and error-bounded SVBF is superior to state-of-the-art methods. |
资助项目 | National Natural Science Foundation of China[61620106003] ; National Natural Science Foundation of China[61701235] ; National Natural Science Foundation of China[61772523] ; National Natural Science Foundation of China[61471338] ; National Natural Science Foundation of China[61571046] ; Beijing Natural Science Foundation of China[L182059] ; Fundamental Research Funds for the Central Universities of China[30917011323] ; Open Projects Program of National Laboratory of Pattern Recognition of China[201900020] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000468036000005 |
出版者 | SCIENCE PRESS |
资助机构 | National Natural Science Foundation of China ; Beijing Natural Science Foundation of China ; Fundamental Research Funds for the Central Universities of China ; Open Projects Program of National Laboratory of Pattern Recognition of China |
源URL | [http://ir.ia.ac.cn/handle/173211/23645] ![]() |
专题 | 模式识别国家重点实验室_三维可视计算 |
通讯作者 | Zhang, Xiao-Peng |
作者单位 | 1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Nanjing Univ Sci & Technol, Sch Comp Sci & Technol, Nanjing 210094, Jiangsu, Peoples R China 4.Beijing Normal Univ, Sch Geog, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China |
推荐引用方式 GB/T 7714 | Yuan, Meng-Ke,Dai, Long-Quan,Yan, Dong-Ming,et al. Fast and Error-Bounded Space-Variant Bilateral Filtering[J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,2019,34(3):550-568. |
APA | Yuan, Meng-Ke,Dai, Long-Quan,Yan, Dong-Ming,Zhang, Li-Qiang,Xiao, Jun,&Zhang, Xiao-Peng.(2019).Fast and Error-Bounded Space-Variant Bilateral Filtering.JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,34(3),550-568. |
MLA | Yuan, Meng-Ke,et al."Fast and Error-Bounded Space-Variant Bilateral Filtering".JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 34.3(2019):550-568. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。