DTR-GAN: Dilated Temporal Relational Adversarial Network for Video Summarization
文献类型:会议论文
作者 | Yujia Zhang1,2![]() ![]() ![]() |
出版日期 | 2019-05 |
会议日期 | 2019-5 |
会议地点 | Chengdu, China |
英文摘要 | Video summarization targets the challenge of finding the small est subset of frames, while still conveying the whole story of a given video. Thus it is of great significance for large-scale video understanding, allowing efficient processing of the large amount of videos that are uploaded every day. In this paper, we introduce a Dilated Temporal Relational Adversarial Network (DTR-GAN) to achieve frame-level video summarization. The dilated temporal relational units in the generator aim to exploit multi-scale temporal context in order to select key frames. To ensure that the model pre dicts high quality summaries, we present a discriminator that learns to enhance both the information completeness and compactness via a three-player loss. Experiments on the public TVSum dataset demonstrate the effectiveness of the proposed approach. |
源URL | [http://ir.ia.ac.cn/handle/173211/23649] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_先进机器人控制团队 |
通讯作者 | Yujia Zhang |
作者单位 | 1.Institute of Automation, Chinese Academy of Sciences 2.University of Chinese Academy of Sciences 3.Machine Learning Group, UiT The Arctic University of Norway |
推荐引用方式 GB/T 7714 | Yujia Zhang,Michael Kampffmeyer,Xiaoguang Zhao,et al. DTR-GAN: Dilated Temporal Relational Adversarial Network for Video Summarization[C]. 见:. Chengdu, China. 2019-5. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。