中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
DTR-GAN: Dilated Temporal Relational Adversarial Network for Video Summarization

文献类型:会议论文

作者Yujia Zhang1,2; Michael Kampffmeyer3; Xiaoguang Zhao1,2; Min Tan1,2
出版日期2019-05
会议日期2019-5
会议地点Chengdu, China
英文摘要

Video summarization targets the challenge of finding the small est subset of frames, while still conveying the whole story of a given video. Thus it is of great significance for large-scale video understanding, allowing efficient processing of the large amount of videos that are uploaded every day. In this paper, we introduce a Dilated Temporal Relational Adversarial Network (DTR-GAN) to achieve frame-level video summarization. The dilated temporal relational units in the generator aim to exploit multi-scale temporal context in order to select key frames. To ensure that the model pre dicts high quality summaries, we present a discriminator that learns to enhance both the information completeness and compactness via a three-player loss. Experiments on the public TVSum dataset demonstrate the effectiveness of the proposed approach.

源URL[http://ir.ia.ac.cn/handle/173211/23649]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_先进机器人控制团队
通讯作者Yujia Zhang
作者单位1.Institute of Automation, Chinese Academy of Sciences
2.University of Chinese Academy of Sciences
3.Machine Learning Group, UiT The Arctic University of Norway
推荐引用方式
GB/T 7714
Yujia Zhang,Michael Kampffmeyer,Xiaoguang Zhao,et al. DTR-GAN: Dilated Temporal Relational Adversarial Network for Video Summarization[C]. 见:. Chengdu, China. 2019-5.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。