Monocular Dense Reconstruction by Depth Estimation Fusion
文献类型:会议论文
作者 | Chen, Tian1,2![]() ![]() ![]() ![]() |
出版日期 | 2018-03-19 |
会议日期 | 2018-6-9 |
会议地点 | Shenyang, China |
关键词 | Dense Reconstruction, Monocular Depth Estimation, Depth Fusion, Gan |
英文摘要 | Dense and accurate reconstruction plays a fundamental role in mobile robot’s environment perception and navigation. It’s also necessary for obstacle avoidance and path planning of mobile robots. We propose a method to incrementally reconstruct the scene from monocular sequence by fusing the depth from geometry computation and gen- erative adversarial networks (GAN) prediction. The depth from geometry triangulation is precise but sparse, while the depth from GAN is dense but unscaled. In this paper, we combine the advantages from two methods with a linear model optimized by graph structure. Experiments showed that our proposed method gives precise dense reconstruction in real time. |
产权排序 | 1 |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/23669] ![]() |
专题 | 精密感知与控制研究中心_人工智能与机器学习 |
通讯作者 | Zhang, Dapeng |
作者单位 | 1.Institute of Automation, Chinese Academy of Science, Beijing 100190 2.School of Computer and Control Engineering, University of Chinese Academy of Sciences, Beijing 100190 |
推荐引用方式 GB/T 7714 | Chen, Tian,Ding, Wendong,Zhang, Dapeng,et al. Monocular Dense Reconstruction by Depth Estimation Fusion[C]. 见:. Shenyang, China. 2018-6-9. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。