Dynamic Feature Matching for Partial Face Recognition
文献类型:期刊论文
作者 | He LX(何凌霄)![]() ![]() ![]() |
刊名 | IEEE Transactions on Image Processing
![]() |
出版日期 | 2019 |
期号 | 2页码:791-802 |
关键词 | Fully Convolutional Network Dynamic Feature Matching Partial Face Recognition |
英文摘要 | Partial face recognition (PFR) in an unconstrained environment is a very important task, especially in situations where partial face images are likely to be captured due to occlusions, out-of-view, and large viewing angle, e.g., video surveillance and mobile devices. However, little attention has been paid to PFR so far and thus, the problem of recognizing an arbitrary patch of a face image remains largely unsolved. This study proposes a novel partial face recognition approach called Dynamic Feature Matching (DFM), which combines Fully |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/23696] ![]() |
专题 | 自动化研究所_智能感知与计算研究中心 |
通讯作者 | Sun ZN(孙哲南) |
作者单位 | 中科院自动化研究所 |
推荐引用方式 GB/T 7714 | He LX,Li HQ,Zhang Q,et al. Dynamic Feature Matching for Partial Face Recognition[J]. IEEE Transactions on Image Processing,2019(2):791-802. |
APA | He LX,Li HQ,Zhang Q,&Sun ZN.(2019).Dynamic Feature Matching for Partial Face Recognition.IEEE Transactions on Image Processing(2),791-802. |
MLA | He LX,et al."Dynamic Feature Matching for Partial Face Recognition".IEEE Transactions on Image Processing .2(2019):791-802. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。